Multi-beam Sensor (1 Beam: 50 mm)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Pin no.	Remarks	Name
1	0	Output (OUT)
2	V	Power supply (Vcc)
3	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ± 6	±0.375
6 < mm ± 10	±0.45
10 < mm ± 18	±0.55
18 < mm ± 30	±0.65

Recommended Connectors: Japan Molex 51090-0300 (crimp-type connector)

52484-0310 (insulation displacement-type connector)

Electrical and Optical Characteristics (Ta = 0^{\circ}C to 60^{\circ}C)

Item	Value	Condition
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	$V_{CC} = 5 V, R_L = \infty$
Peak current consumption	200 mA max.	$V_{CC} = 5 V, R_L = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 V$, $I_{OL} = 4 mA$ (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 k Ω (see note 2)
Response delay time (High to Low)	1.5 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	1.5 ms max.	The time required for the output to become "Hi" after removing sensing object.

1. These conditions are for the sensing of lusterless paper with an OD of 0.9 maximum located at the correct sensing position of the Note: Sensor as shown in the optical path arrangement on page 2.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 2.

Features

- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Absolute Maximum Ratings (Ta = 25°C)

ltem		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Load voltage		V _{OUT}	7 V
Load current		I _{OUT}	10 mA
Ambient	Operating	Topr	0°C to 60°C
temperature	Storage	Tstg	-15°C to 70°C

Make sure there is no icing or condensation when Note: operating the Sensor.

Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.9 max. (sensing distance: 50 mm) (see note)
Non-sensing distance	85 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	50 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.

Note: The data shown are initial data.

Optical Path Arrangement

Note: 1. The part with oblique lines indicates the paper sensing area of the EY3A-1051, which is practically determined by the diameter of the beam and its tolerance.

2. The non-sensing distance of the EY3A-1051 is determined using a paper with an OD of 0.05.

Engineering Data

Distance Characteristics (Typical)

Multi-beam Sensor (1 Beam: 80 mm)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Pin no.	Remarks	Name
1	0	Output (OUT)
2	V	Power supply (Vcc)
3	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ± 6	±0.375
6 < mm ± 10	±0.45
10 < mm ± 18	±0.55
18 < mm ± 30	±0.65

Recommende	d Connectors:
Japan Molex	51090-0300 (crimp-type connector) 52484-0310 (insulation displacement-type connector)

Electrical and Optical Characteristics (Ta = 0^{\circ}C to 60^{\circ}C)

Item	Value	Condition
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	$V_{CC} = 5 V, R_L = \infty$
Peak current consumption	200 mA max.	$V_{CC} = 5 V, R_L = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 \text{ V}, I_{OL} = 4 \text{ mA}$ (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 k Ω (see note 2)
Response delay time (High to Low)	1.5 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	1.5 ms max.	The time required for the output to become "Hi" after removing sensing object.

1. These conditions are for the sensing of lusterless paper with an OD of 0.8 maximum located at the correct sensing position of the Note: Sensor as shown in the optical path arrangement on page 4.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 4.

Features

- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Load voltage		V _{OUT}	7 V
Load current		I _{OUT}	10 mA
Ambient	Operating	Topr	0°C to 60°C
temperature	Storage	Tstg	-15°C to 70°C

Make sure there is no icing or condensation when Note: operating the Sensor.

Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.7 max. (sensing distance: 80 mm) (see note)
Non-sensing distance	120 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	80 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.

Note: The data shown are initial data.

Optical Path Arrangement

- **Note:** 1. The beam diameter indicates the paper sensing area and this area takes precedence over the operating area which is the sum of the beam diameter and tolerance dimensions.
 - 2. The non-sensing distance is determined using paper of 0.05 OD.

Engineering Data

Distance Characteristics (Typical)

Multi-beam Sensor (1 Beam: 125 mm)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Pin no.	Remarks	Name
1	0	Output (OUT)
2	V	Power supply (Vcc)
3	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ± 6	±0.375
6 < mm ± 10	±0.45
10 < mm ± 18	±0.55
18 < mm ± 30	±0.65

Recommended Connectors: Japan Molex 51090-0300 (crimp-type connector) 52484-0310 (insulation displacement-type connector)

52484-0310 (insulation displacement-type connector)

Electrical and Optical Characteristics (Ta = 0^{\circ}C to 65^{\circ}C)

Item	Value	Condition
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	$V_{CC} = 5 V, R_L = \infty$
Peak current consumption	200 mA max.	$V_{CC} = 5 V, R_L = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 V$, $I_{OL} = 4 mA$ (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 k Ω (see note 2)
Response delay time (High to Low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.6 maximum located at the correct sensing position of the Sensor as shown in the optical path arrangement on page 6.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 6.

Features

- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Power supply voltage		V _{CC}	7 V
Load voltage		V _{OUT}	7 V
Load current		I _{OUT}	10 mA
Ambient	Operating	Topr	0°C to 65°C
temperature	Storage	Tstg	-15°C to 70°C

Note: Make sure there is no icing or condensation when operating the Sensor.

Item	Characteristic value	
Sensing density	Lusterless paper with an OD of 0.6 max. (sensing distance: 125 mm) (see note)	
Non-sensing distance	185 mm (from the top of the sensor), OD: 0.05	
Paper sensing distance	125 mm (from the top of the sensor)	
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.	

Note: The data shown are initial data.

Optical Path Arrangement

Engineering Data

omron EY3A-3051

Multi-beam Sensor (3 Beams: 50 mm)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Pin no.	Remarks	Name
1	01	Output 1 (OUT 1)
2	O2	Output 2 (OUT 2)
3	O3	Output 3 (OUT 3)
4	V	Power supply (Vcc)
5	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ± 6	±0.375
6 < mm ± 10	±0.45
$10 < mm \pm 18$	±0.55
18 < mm ± 30	±0.65

Features

- Simultaneously senses three objects positioned differently, thus saving space.
- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Application Examples

Sensing of paper sizes.

Absolute Maximum Ratings (Ta = 25°C)

Iten	n	Symbol	Rated value
Power supply	voltage	V _{CC}	7 V
Load voltage		V _{OUT}	7 V
Load current		I _{OUT}	10 mA
Ambient	Operating	Topr	0°C to 65°C
temperature	Storage	Tstg	-15°C to 70°C

Note: Make sure there is no icing or condensation when operating the Sensor.

Recommended Connectors: Japan Molex 51090-0500 (crimp-type connector) 52484-0510 (insulation displacement-type connector)

■ Electrical and Optical Characteristics (Ta = 0°C to 65°C)

Item	Value	Condition
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	$V_{CC} = 5 V, R_L = \infty$
Peak current consumption	300 mA max.	$V_{CC} = 5 V, R_L = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 V$, $I_{OL} = 4 mA$ (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 k Ω (see note 2)
Response delay time (High to Low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.8 maximum located at the correct sensing position of the Sensor as shown in the optical path arrangement on page 8.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 8.

Item	Characteristic value	
Sensing density	Lusterless paper with an OD of 0.8 max. (sensing distance: 50 mm) (see note)	
Non-sensing distance	80 mm (from the top of the sensor), OD: 0.05	
Paper sensing distance	50 mm (from the top of the sensor)	
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.	

Note: The data shown are initial data.

Optical Path Arrangement

Engineering Data

Multi-beam Sensor (3 Beams: 80 mm)

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Pin no.	Remarks	Name
1	01	Output 1 (OUT 1)
2	O2	Output 2 (OUT 2)
3	O3	Output 3 (OUT 3)
4	V	Power supply (Vcc)
5	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ± 6	±0.375
6 < mm ± 10	±0.45
10 < mm ± 18	±0.55
18 < mm ± 30	±0.65

Recommended Japan Molex	Connectors: 51090-0500 (crimp-type connector) 52484-0510 (insulation displacement-type connector)

Electrical and Optical Characteristics (Ta = 0^{\circ}C to 65^{\circ}C)

Item	Value	Condition
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	$V_{CC} = 5 V, R_{L} = \infty$
Peak current consumption	300 mA max.	$V_{CC} = 5 V, R_L = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 \text{ V}, I_{OL} = 4 \text{ mA}$ (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 k Ω (see note 2)
Response delay time (High to Low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

1. These conditions are for the sensing of lusterless paper with an OD of 0.8 maximum located at the correct sensing position of the Note: Sensor as shown in the optical path arrangement on page 10.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 10.

Features

- Simultaneously senses three objects positioned differently, thus saving space.
- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- . Narrow sensing range ensures stable sensing of a variety of sensing objects.

Application Examples

Sensing of paper sizes.

Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

Iten	n	Symbol	Rated value
Power supply	voltage	V _{CC}	7 V
Load voltage		V _{OUT}	7 V
Load current		I _{OUT}	10 mA
Ambient	Operating	Topr	0°C to 65°C
temperature	Storage	Tstg	-15°C to 70°C

Make sure there is no icing or condensation when Note: operating the Sensor.

Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.8 max. (sensing distance: 80 mm) (see note)
Non-sensing distance	120 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	80 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 <i>l</i> x max., fluorescent light: 2,000 <i>l</i> x max.

Note: The data shown are initial data.

Optical Path Arrangement

Engineering Data

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Pin ANNA 17.3 15.5 13.3 no.1 3-0.2 dia. 3.3 9-38±0. .23 78

Pin no.	Remarks	Name
1	01	Output 1 (OUT 1)
2	O2	Output 2 (OUT 2)
3	O3	Output 3 (OUT 3)
4	V	Power supply (Vcc)
5	G	Ground (GND)

Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	±0.3
3 < mm ± 6	±0.375
6 < mm ± 10	±0.45
$10 < mm \pm 18$	±0.55
18 < mm ± 30	±0.65

Features

Simultaneously senses three objects positioned differently, thus saving space.

Multi-beam Sensor

(3 Beams: 125 mm)

- Ensures higher sensitivity and external light interference resistivity than any other photomicrosensor.
- Narrow sensing range ensures stable sensing of a variety of sensing objects.

Application Examples

Sensing of paper sizes.

Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

Iten	n	Symbol	Rated value
Power supply	voltage	V _{CC}	7 V
Load voltage		V _{OUT}	7 V
Load current		I _{OUT}	10 mA
Ambient	Operating	Topr	0°C to 65°C
temperature	Storage	Tstg	-15°C to 70°C

Make sure there is no icing or condensation when Note: operating the Sensor.

Recommended Connectors: Japan Molex 51090-0500 (crimp-type connector) 52484-0510 (insulation displacement-type connector)

Electrical and Optical Characteristics (Ta = 0^{\circ}C to 65^{\circ}C)

Item	Value	Condition
Power supply voltage	5 V ±5%	
Current consumption	50 mA max.	$V_{CC} = 5 V, R_L = \infty$
Peak current consumption	300 mA max.	$V_{CC} = 5 V, R_L = \infty$
Low-level output voltage	0.6 V max.	$V_{CC} = 5 V$, $I_{OL} = 4 mA$ (see note 1)
High-level output voltage	3.5 V min.	V_{CC} = 5 V, R_L = 4.7 k Ω (see note 2)
Response delay time (High to Low)	35 ms max.	The time required for the output to become "Lo" after placing sensing object.
Response delay time (Low to high)	20 ms max.	The time required for the output to become "Hi" after removing sensing object.

Note: 1. These conditions are for the sensing of lusterless paper with an OD of 0.6 maximum located at the correct sensing position of the Sensor as shown in the optical path arrangement on page 12.

2. These conditions are for the sensing of the paper supporting plate with an OD of 0.05 located using the glass plate without paper as shown in the optical path arrangement on page 12.

Item	Characteristic value
Sensing density	Lusterless paper with an OD of 0.6 max. (sensing distance: 125 mm) (see note)
Non-sensing distance	185 mm (from the top of the sensor), OD: 0.05
Paper sensing distance	125 mm (from the top of the sensor)
Ambient illumination	Sunlight: 3,000 ℓx max., fluorescent light: 2,000 ℓx max.

Note: The data shown are initial data.

Optical Path Arrangement

Engineering Data

