

E5EZ-PRR

Position Proportional Controller

User's Manual

Cat. No. H200-E1-01

E5EZ-PRR Temperature Controller Features:

Thank you for choosing the OMRON E5EZ-PRR.

This user manual describes E5EZ-PRR features, performance, and necessary precautions. When using the E5EZ-PRR please carefully observe the following:

- The E5EZ-PRR should be used only by trained professionals;
- Read the instruction manual carefully before using, and following the instructions during use;
- Keep this manual for future reference.
- For detailed explanations of communications functions please see E5AN/EN/CN/GN Temperature Controller Communications Manual (Cat.N0. H102). The E5EZ-PRR has similar communications functions.

© OMRON, 2006

All rights reserved. No part of this document may be reproduced, transmitted or stored in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of OMRON.

Use of information contained herein does not affect patent rights. OMRON products are constantly being improved, and the information covered in this manual is subject to change without notice. Every effort was made to include all necessary information; but OMRON cannot be held responsible for losses incurred due to mistakes or omissions.

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY. In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this manual.

 Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.

• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

Safety Precautions

Definition of Precautionary Information

The following notation is used in this manual to provide precautions required to ensure safe usage of the product.

The safety precautions that are provided are extremely important to safety. Always read and heed the information provided in all safety precautions.

The following notation is used.

Symbols

S	Symbol	Meaning			
Caution	\triangle	General Caution Indicates non-specific general cautions, warnings, and dangers.			
Caulion	A	Electrical Shock Caution Indicates possibility of electric shock under specific conditions.			
	\Diamond	General Prohibition Indicates non-specific general prohibitions.			
Prohibition	(\mathbb{S})	Disassembly Prohibition Indicates prohibitions when there is a possibility of injury, such as from electric shock, as the result of disassembly.			
Mandatory Caution	0	General Caution Indicates non-specific general cautions, warnings, and dangers.			

Safety Precautions

Do not touch the terminals while power is being supplied. Doing so may occasionally result in minor injury due to electric shock.	
Do not allow pieces of metal, wire clippings, or fine metallic shav-ings or filings from installation to enter the product. Doing so may occasionally result in electric shock, fire, or malfunction.	0
Do not use the product where subject to flammable or explosive gas. Otherwise, minor injury from explosion may occasionally occur.	U
Never disassemble, modify, or repair the product or touch any of the internal parts. Minor electric shock, fire, or malfunction may occasionally occur.	
 CAUTION - Risk of Fire and Electric Shock a) This product is UL listed as Open Type Process Control Equip-ment. It must be mounted in an enclosure that does not allow fire to escape externally. b) More than one disconnect switch may be required to deenergize the equipment before servicing the product. c) Signal inputs are SELV, limited energy.*1 d) Caution: To reduce the risk of fire or electric shock, do not inter-connect the outputs of different Class 2circuits.*2 	Â
If the output relays are used past their life expectancy, contact fusing or burning may occasionally occur. Always consider the application conditions and use the output relays within their rated load and electrical life expectancy. The life expectancy of output relays varies considerably with the output load and switching conditions.	

- *1 A SELV circuit is one separated from the power supply with double insulation or reinforced insulation, thatdoes not exceed 30 V r.m.s. and 42.4 V peak or 60VDC.
- *2 A class 2 power supply is one tested and certified by UL as having the current and voltage of thesecondary output restricted to specific levels.

\wedge	CAUTION
Tighten the terminal screws to betwee Loose screws may occasionally resu	een 0.74 and 0.90 N • m. ult in fire. (See note.)
Set the parameters of the product so the system being controlled. If they a unexpected operation may occasion damage or accidents.	o that they are suitable for are not suitable, ally result in property
A malfunction in the Temperature Co make control operations impossible resulting in property damage. To ma of malfunction of the Temperature C safety measures, such as installing a separate line.	ontroller may occasionally or prevent alarm outputs, intain safety in the event ontroller, take appropriate a monitoring device on a
A semiconductor is used in the outp relays. If excessive noise or surge is terminals, a short-circuit failure is lik remains shorted, fire will occur due t heater or other cause. Take measure prevent excessive temper-ature incre from spreading.	ut section of long-life impressed on the output ely to occur. If the output to overheating of the es in the overall system to ease and to prevent fire

Precautions for Safe Use

Be sure to observe the following precautions to prevent operation failure, malfunction, or adverse affects on the performance and functions of the product. Not doing so may occasionally result in unexpected events.

- (1) The product is designed for indoor use only. Do not use the product outdoors or in any of the followinglocations.
 - Places directly subject to heat radiated from heating equipment.
 - Places subject to splashing liquid or oil atmosphere.
 - Places subject to direct sunlight.
 - Places subject to dust or corrosive gas (in particular, sulfide gas and ammonia gas).
 - Places subject to intense temperature change.
 - Places subject to icing and condensation.
 - Places subject to vibration and large shocks.
- (2) Use and store the Digital Temperature Controller within the rated ambient temperature and humidity. Gang-mounting two or more temperature controllers, or mounting temperature controllers above each other may cause heat to build up inside the temperature controllers, which will shorten their service life. Insuch a case, use forced cooling by fans or other means of air ventilation to cool down the Digital Temperature Controllers.
- (3) To allow heat to escape, do not block the area around the product. Do not block the ventilation holes on the product.
- (4) Be sure to wire properly with correct polarity of terminals.
- (5) Use the specified size (M3.5, width 7.2 mm or less) crimped terminals for wiring. For open-wiredconnection, use stranded or solid copper wires with a gage of AWG24 to AWG14 (equal to a cross-sectional area of 0.205 to 2.081 mm²). (The stripping length is 5 to 6 mm.) Up to two wires or two crimpterminals can be inserted into a single terminal.
- (6) Do not wire the terminals which are not used.
- (7) To avoid inductive noise, keep the wiring for the Digital Temperature Controller's terminal block away from power cables carry high voltages or large currents. Also, do not wire power lines together with or parallel to Digital Temperature Controller wiring. Using shielded cables and using separate conduits or ducts is recommended.

Attach a surge suppressor or noise filter to peripheral devices that generate noise (in particular, motors, transformers, solenoids, magnetic coils or other equipment that have an inductance component). When a noise filter is used at the power supply, first check the voltage or current, and attach the noise filter as close as possible to the temperature controller.

Allow as much space as possible between the Digital Temperature Controller and devices that generate powerful high frequencies (high-frequency welders, high-frequency sewing machines, etc.) or surge.

- (8) Use this product within the rated load and power supply.
- (9) Make sure that the rated voltage is attained within two seconds of turning ON the power using a switch or relay contact. If the voltage is applied gradually, the power may not be reset or output malfunctions may occur.
- (10) Make sure that the Temperature Controller has 30 minutes or more to warm up after turning ON the power before starting actual control operations to ensure the correct temperature display.
- (11) When executing self-tuning, turn ON power for the load (e.g., heater) at the same time as or before supplying power to the Digital Temperature Controller. If power is turned ON for the Digital Temperature Controller before turning ON power for the load, self-tuning will not be performed properly and optimum control will not be achieved.
- (12) A switch or circuit breaker should be provided close to this unit. The switch or circuit breaker should be within easy reach of the operator, and must be marked as a disconnecting means for this unit.
- (13) Always turn OFF the power supply before pulling out the interior of the product, and never touch nor apply shock to the terminals or electronic components. When inserting the interior of the product, do not allow the electronic components to touch the case.

- (14) Do not use paint thinner or similar chemical to clean with. Use standard grade alcohol.
- (15) Design system (control panel, etc) considering the 2 second of delay that the controller's output to be set after power ON.
- (16) The output may turn OFF when shifting to certain levels. Take this into consideration when performing control.
- (17) The number of EEPROM write operations is limited. Therefore, use RAM write mode when frequently overwriting data during communications or other operations.

Service Life

Use the Temperature Controller within the following temperature and humidity ranges: Temperature: -10 to 55°C (with no icing or condensation), Humidity: 25% to 85% If the Controller is installed inside a control board, the ambient temperature must be kept to under 55°C, including the temperature around the Controller.

The service life of electronic devices like Temperature Controllers is determined not only by the number of times the relay is switched but also by the service life of internal electronic components. Component service life is affected by the ambient temperature: the higher the temperature, the shorter the service life and, the lower the temperature, the longer the service life. Therefore, the service life can be extended by lowering the temperature of the Temperature Controller. When two or more Temperature Controllers are mounted horizontally close to each other or vertically next to one another, the internal temperature will increase due to heat radiated by the Temperature Controllers and the service life will decrease. In such a case, use forced cooling by fans or other means of air ventilation to cool down the Temperature Controllers. When providing forced cooling, however, be careful not to cool down the terminals sections alone to avoid measurement errors.

Ambient Noise

To avoid inductive noise, keep the wiring for the Digital Temperature Controller's terminal block wiring away from power cables carrying high voltages or large currents. Also, do not wire power lines together with or parallel to Digital Temperature Controller wiring. Using shielded cables and using separate conduits or ducts is recommended.

Attach a surge suppressor or noise filter to peripheral devices that generate noise (in particular, motors, transformers, solenoids, magnetic coils or other equipment that have an inductance component). When a noise filter is used at the power supply, first check the voltage or current, and attach the noise filter as close as possible to the Temperature Controller.

Allow as much space as possible between the Digital Temperature Controller and devices that generate powerful high frequencies (high-frequency welders, high-frequency sewing machines, etc.) or surge.

Ensuring Measurement Accuracy

When extending or connecting the thermocouple lead wire, be sure to use compensating wires thatmatch the thermocouple types.

When extending or connecting the lead wire of the platinum resistance thermometer, be sure to use Mount the Temperature Controller so that it is horizontally level.

If the measurement accuracy is low, check to see if input shift has been set correctly.

Waterproofing

The degree of protection is as shown below. Sections without any specification on their degree of protection or those with IP \square 0 are not waterproof.

Front panel: NEMA4X for indoor use (equivalent to IP66)

Rear case: IP20, Terminal section: IP00

Precautions for Operation

- It takes approximately two seconds for the outputs to turn ON from after the power supply is turned ON. Due consideration must be given to this time when incorporating Temperature Controllers into a control panel or similar device.
- (2) Make sure that the Temperature Controller has 30 minutes or more to warm up after turning ON the power before starting actual control operations to ensure the correct temperature display.
- (3) When executing self-tuning, turn ON power for the load (e.g., heater) at the same time as or before supplying power to the Temperature Controller. If power is turned ON for the Temperature Controller before turning ON power for the load, self-tuning will not be performed properly and optimum control will not be achieved. When starting operation after the Temperature Controller has warmed up, turn OFF the power and then turn it ON again at the same time as turning ON power for the load. (Instead of turning the Temperature Controller OFF and ON again, switching from STOP mode to RUN mode can also be used.)
- (4) Avoid using the Controller in places near a radio, television set, or wireless installing. The Controller maycause radio disturbance for these devices.

Preparations for Use

Be sure to thoroughly read and understand the manual provided with the product, and check the following points.

Timing	Check point	Details
Purchasing the product	Product appearance	After purchase, check that the product and packaging are not dented or otherwise damaged. Damaged internal parts may prevent optimum control.
	Product model and specifications	Make sure that the purchased product meets the required specifica- tions.
Setting the Unit	Product installation loca- tion	Provide sufficient space around the product for heat dissipation. Do not block the vents on the product.
Wiring	Terminal wiring	Do not subject the terminal screws to excessive stress (force) when tightening them. Make sure that there are no loose screws after tightening terminal screws to the specified torque of 1.13 to 1.36 N • m (see note).
vvinig		Be sure to confirm the polarity for each terminal before wiring the termi-nal block and connectors.
	Power supply inputs	Wire the power supply inputs correctly. Incorrect wiring will result in damage to the internal circuits.
Operating environment	Ambient temperature	The ambient operating temperature for the product is -10 to 55°C (with no condensation or icing). To extend the service life of the product, install it in a location with an ambient temperature as low as possible. In locations exposed to high temperatures, if necessary, cool the products using a fan or other cooling method.
	Vibration and shock	Check whether the standards related to shock and vibration are satis- fied at the installation environment. (Install the product in locations where the conductors will not be subject to vibration or shock.)
	Foreign particles	Install the product in a location that is not subject to liquid or foreign particles entering the product.

Meanings of abbreviations

The following abbreviations are used in parameter names, figures, and in the text.

Their meanings are explained below:

Symbol	Term	
PV	Present value (displayed as "PV" on the panel)	
SP	Set point (displayed as "SV" on the panel)	8888 sv
SV	Set value	
MV	Valve percent open	
AT	Auto-tuning	
EU	Engineering unit *1	

*1 "EU" represents one engineering unit. EU (e.g. °C, m, or, g) indicates the smallest engineering unit.

EU size depends on input type. For example, when input temperature range is set to -200°C ~ +1300°C, 1EU is 1°C; and when input temperature range is set to -20.0°C ~ 500.0°C, 1EU is 0.1°C.

With analog input, EU varies according to the decimal point of the scaling setting, and 1 EU becomes the smallest scaling unit.

Distinguishing Characters

The following table shows the relationship between the character and letter symbols as displayed on the monitor.

8	6	5	ď	E	۶	5	X	- 1	-	μ	1	ñ
А	В	С	D	Е	F	G	Н		J	Κ	L	Μ

n	ā	p	9	~	5	Ł	Ľ	IJ	Ū.	1	Ч	11
Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ

■ How to use this manual

	Objective	Related titles	Description
•	Understanding the E5EZ-PRR	Chapter One Introduction	This chapter describes the fea- tures, names, and typical func- tions of each component.
•	Configuring the E5EZ-PRR	Chapter Two Preparing for Operation	This chapter describes installa- tion and wiring procedures.
•	Basic Operation	Chapter Three Basic Operation Chapter Five Parameters	These two chapters give examples of basic controls.
•	Operation Applications	Chapter Four Operation Applications Chapter Five Parameters	These two chapters describe how to use the E5EZ-PRR's advanced functions.
•	Appendix		This chapter describes unit specifications. The attached parameter table can serve as a parameter setting reference.

Content

		Introduction	I
		Read and Understand this Manual	II
		Precautions for Safe Use	
		Precautions for Operation	IX
			Λι
		Preparations for Use	IX
		Conventions Used in This Manual	X
Chapte	er 1 Overview		1-1
1.1	Name of Parts		1-2
	E5EZ-PRR Front Panel		1-2
	Display		1-3
	Using the Keys		1-3
1.2	Input/Output Configuration and Main F	functions	1-4
	Input/Output Configuration		1-4
1 0	Main Functions	Kay Operationa	1-5
1.3	Select Parameters	key Operations	1-0
	Fixed Settings		1-0 1-8
1.4	Communications Functions		
Chante	ar 2 Setup		2-1
0112010			۱ <u>ک</u>
2.1	ESEZ DDD Dimonsions		
	ESEZ-PRR Panel Cutout		2-2 2-2
	E5EZ-PBB Assembly		
	Installing the E5EZ-PRR onto Panel		2-3
2.2	Wiring Terminals		2-4
	E5EZ-PRR Wiring		2-4
	Wires Connecting Notice		2-4
	Connecting Wires		2-5
	Event Input		2-6
0.0	Communications		2-6
2.3	Ensuring Long Service Life		0- 2
	Decreasing Noise		0- 2
	Ensuring High Accuracy Measurement		2-0
Chante	ar 3 Basic Operations		3_1
2 1			01 20
3.1 2.2	Sot Input Type		
3.2	Input Type		3-4 2_1
33	Selecting °C/°F		
0.0	Temperature Unit		
3.4	Setting Output Specifications		
2.1	Direct/reverse Operation		
3.5	SP Setting		3-9
	SP Modifying		3-9

3.6	Verifying PID Constants (AT and manual settings)	
	AT (auto-turning)	
37	Alarm Outout	3-14
0.7		۲۰۰۰ ۲۰۰۵ ۲۰۱۸
	Alarm Value	3-15
	Alarm Delay	
3.8	Ceramic Kiln Setting Position Proportional Control	3-17
0.0	Application Examples	
	Wiring	
	Settings	3-18
	Adjustment	3-19
	Fixed settings for position proportional control	3-20
3.9	During Manual Control	3-21
3.10	Operation Requirements	3-22
Chanto	r 4 Applied Operations	<i>1</i> -1
	Input Shift Values	·····
4.1	Input Shift	
	Calculating Input Shift Values (2 Point Shift)	4-2 1-3
	1 Point Shift Method	
	2 Point Shift Method	4-4
	2 Point Temperature Input Shift Example	
4.2	Alarm Hysteresis	4-6
	Standby Sequence	
	Standby Sequence Restart	
	Alarm Latch	4-6
	Shutdown on Alarm /Alarm Activation	4-7
	Alarm Operation Overview	4-7
	Alarm Delay Function	4-8
4.3	Calibrating Upper and Lower Limits (Analog Signal Input)	4-9
	Analog Signal Input	4-9
4.4	Using Event Input	4-11
	Setting Event Input	
	Using Multiple Set Points	
	Key Operation Settings	
	Setting	
4 5	Using Run/Stop Control	
4.5	Setting SP Opper and Lower Limit values	
	Set Point Limits	
4.6	Using the SP Ramp Eurotion (to limit rate of SP change)	
4.0	SP Ramp	
47	Switching to the Advanced Function Level	/۱-۴ ۱۰-۱۵
4.7	Using The Key Protection Level	
4.0	Key Protection	
		- /
Chapte	r 5 Parameters	
	Contents of This Chapter.	5-2
	Definition of the symbols used in this chapter	5-2
	Parameter display	5-2
	Parameter explain order in this chapter	5-2
	Manual Control Level	5-3
	Protect Level	5-5

Operation Level	5-7
Adjustment Level	5-12
Initial Level	5-20
Advanced Function Level	5-28
Communications Level	5-41
Appendix	A-1
Specifications	
Ratings	
Characteristics	A-3
Error Display	A-4
Parameter operations table	A-6
Sensor input settings and indicator range	A-10
Setting Data List	A-11
Parameter Flow	A-12
Index	A-15

Chapter 1 Overview

1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-6
1-8
1-8
1-9
•

1.1 Name of Parts

■ E5EZ-PRR Front Panel

Di	splay			
ullet	No. 1 Display	Displays process value and setting types.		
	No. 2 Display	All display segments light up for one second at startup.		
•	No. 3 Display	Displays the set point, reading values, and input values. When "valve opening display" is set to ON, displays the percentage of valve opening. When "valve opening display" is set to OFF nothing will be displayed. (for "value opening display", see page 5-40.) During parameter set-up No.3 displays the current level.		
•	Operation Indicator Lights	 (1) ALM1 (alarm 1) When the alarm 1 output is ON, this light will come on. ALM2 (alarm 2) When the alarm 2 output is ON, this light will come on. 		
		 OUT1, OUT2 (control output 1 (OPEN), control output 2 (CLOSE)) When control output 1/control output 2 is ON, the light will come on. 		
		 STOP (stop) The light comes on when operation stops. During opreration, when the event or run/stop setting stops, the light will come on. 		
		 (4) CMW (communications writing control) The light comes on with communications writing "starts" and goes off when communications writing "stops". (5) MANUL (manual control) 		
		The light comes on during 「manual mode」 and goes off during 「automatic mode」.		
•	Temperature Unit	When the display unit parameter is set to temperature, the temperature unit will be displayed. Current "temperature unit" data settings will be displayed. When this parameter is set to "°C", " \mathcal{L} " will be displayed; when it is set to "°F", " \mathcal{F} " will be displayed.		
Us	sing the Keys			
		The basic function of the panel keys are described below.		
•	O (level) key	Press to select setting level. Levels appear in the following sequence: "operations level", $\leftarrow \rightarrow$ "adjustment level", "initial settings level", $\leftarrow \rightarrow$ "communications level"		
•	면 (mode) key	This key is used to select parameters for each level.		
•	\land (up) key	Each press of this key increases values displayed on the No. 2 display, with the rate of increase proportional to the time the key is held down. In \lceil manual mode \rfloor , pressing respectively the output 1 (OPEN output) ON.		
•	쭏 (down) key	Each press of this key decreases values displayed on the No. 2 display with the rate of increase proportional to the time the key is held down. In \lceil manual mode \rfloor , pressing \bowtie turns the output 2 (CLOSE output) ON.		
•	Manual/ automatic) key	Manual/automatic switch key, switches between "manual mode" and "automatic mode". Holding this button for 1 second or more (regardless of how long to let go) changes the mode.		
•	〇+	The group key accesses the E5EZ-PRR "protect level". For details on the protect level, please see Chapter Five "Parameters".		

1.2 Input/Output Configuration and Main Functions

Input/Output Configuration

Main Functions	
	The main functions of the E5EZ-PRR are discussed below. The details of each function and their uses are detailed from Chapter Three on.
 Input Sensor Types 	 Temperature input (T) can be connected to the following input sensors: Platinum resistanc: Pt100, JPt 100 Thermocouple : K, J, T, E, L, U, N, R, S, B Non-contact Temperature Sensor ES1B : 10°C~70°C, 60°C~120°C, 115°C~165°C, 140°C~260°C Analog signal input 0~50mV Analog input (L) can be connected using the following input specifications: Electric current input: DC4~20mA, DC0~20mA Voltage input: DC1~5V, DC0~5V, DC0~10V
Control Output	• E5EZ-PRR models control the output using relays.
• Alarms	 Setting alarm type, alarm values, and upper and lower limit alarms. If necessary the "standby sequence", "alarm hysteresis", "alarm delay" and "alarm off/alarm on" alarm latch parameters may be used for more complete alarm functions. When input error output is set to "ON", any errors will register on alarm output 1.
• Control Tuning	• Optimal PID constants can be set easily with AT (auto-tuning).
 Position Proportional Control 	 Floating control or closed control can be selected. Floating control can be used with or without potentiometer feedback during position proportional control.
Event Input	 The E5EZ-PRR2B
• Communication Functions	 Models with communication capabilities can communicate via CompoWay/ F*1 or Sysway. E5EZ-PRR203 : RS-485 interface E5EZ-PRR201

programmable controller to communicate with prior computers and components.

1.3 Setting Level Configuration and Panel Key Operations

Parameters are divided into groups, and each group is assigned a "level". The setting values in these levels (set items) are called "parameters". The E5EZ-PRR's parameters are divided into the following 7 levels.

	Control in progress	Control stopped
Protect level	0	-
Operation level	0	-
Adjustment level	0	-
Manual control level	0	-
Initial setting level	-	0
Advanced function setting level	-	0
Communications setting level	-	0

* : Set the parameters in the "protect Level" under "initial setting/communications protection" to "0", to activate advanced function levels.

 \bigcirc : Indicates items that can be set.

Of these levels, the initial setting level, communications level, and advanced functions level may only be used when control has stopped. Please note that when selecting any of these three levels, controller output will stop.

Unless the operation level is being displayed, the current level will be displayed. When settings are being changed, the No. 3 display will show the following:

No. 3 display	Level name	
Manual MV	Manual control level	
LPrE	Protect level	
No display	RUN level	
1843	adjustment level	
Lini	input initial setting level	
Líon	Communications setting level	
LAdu	advanced function setting level	
Protect Level	 To switch to this level, you must press more seconds. Protect level is used accidental changes to the parameter parameters located in these protecter * The key's timing can be changed u (advanced function level). 	s and hold the O and R keys for 3 or to prevent any unnecessary or s. Protected levels are not displayed, so ed levels cannot be changed. Inder "Protect level change time"
 Operation Level 	 When the power is turned on this leve level, the initial setting level, and adj During operation process value and point, alarm values, and upper/lower changed. 	I is displayed. From this level the protect ustment level can be accessed. set point can be monitored, and set alarm limits can be monitored and
 Adjustment Level 	 To access this level, press and hold Input from this level is used in controcontains parameters used to set AT activation/deactivation hysteresis, va and PID constants. The uppermost protect level, and operation level car 	the O key for less than 1 second. I settings and offset values. The level (auto-tuning), communications writing rious setting values, input shift values parameters of the initial settings level, be accessed from this level.
 Manual Control Level 	Pushing the Am key under the operation more will activate manual mode, and Under manual control, only "process percentage (manual MV)" can be disvalue/valve open percentage (manuat the Am key for 1 second or more will operation level, display the level's init MV in this mode.	tion/adjustment level for 1 second or d switch to the manual control level. s value/setting value/valve open splayed. Under the "process value/set al MV)" manual control level, pressing switch to automatic mode, switch to the tial data, and allow manual operation of
 Initial Settings Level 	To access this level, press the O key level or adjustment level. 1 second late used to indicate input type and select reverse operation, and alarm type. You setting level or communications setting at least 1 second to switch to the oper than 1 second to switch to the communication	for 3 or more seconds in the operation er, the PV display will blink. This level is control method, control time, direct/ u can move to the advanced function g level from this level. Press the O key for ation level. Press the O key for more nications level.
 Advanced Function Level 	 To activate the advanced function second communications protection" value unenter your password under the initial The initial settings level can be acce This level is used to set the display r sequence, alarm hysteresis, and ala 	etting level, set the "initial setting/ nder the "protect level" to "0", then settings menu ("-169"). ssed from this level. node, and specify event input, standby rm delay.
 Communications Level 	 To access this level, hold the O key settings menu. When the communica- communications conditions in this le personal computer (host), allow reac operation volume. 	for less than 1 second under the initial ations function is used, set the vel. When communicating with a d and write set points and monitoring of

Select Parameters

• Press 🖙 under any level to select parameters. A new parameter appears each time 🖙 is pressed. For details about each parameter, see chapter 5.

Fixed Settings

- If the last parameter is reached and the 📼 key is pressed again, the display will return to the first parameter.
- When selecting another level, fix the parameters and settings on the display.
- When turning the power off, first fix the settings or parameters (by holding the key). In some cases settings cannot be changed by just holding down the or key.

1.4 Communications Functions

E5EZ-PRR comes equipped with communications functions that allow monitoring of the controller and setting of parameters from a host computer. If communications functions are needed, please use a model equipped with these functions (E5EZ-PRR201 □ or PRR203 □). For details on communications functions please see the E5AN/EN/CN/GN temperature controller (Communications Function User's Manuals). The communications functions on the E5EZ-PRR are similar.

Access the communications level as follows.

- (1) In the "Operations level", hold down the 🔘 button for 3 or more seconds. Access to the "Initial Settings Level".
- (2) Hold down the O button for less than 1 second. From the "initial settings level" access the "communications level".
- (3) Press the 🖂 key to access the next group of parameters.
- (4) Press the \bowtie or \bowtie key to change the parameter settings.

Setting Communications Data

Set the E5EZ-PRR communication specifications to conform with the communication settings of the host. In a 1 to many configuration, aside from communication unit numbers, all other settings should match. Each unit must have a unique communication unit number.

Parameters	Character Display	Setting (monitor) Values	Setting	Initial Value	Units
Communication Unit No	U-nā	0 ~ 99		1	None
Baud Rate	6PS	1.2, 2.4, 4.8, 9.6, 19.2	1.2,2.4,4.8,9.6, 19.2	9.6	Kbps
Data Length	LEn	7, 8		7	bit
Stop Bit	5628	1, 2		2	bit
Communication Parity	Ргеу	none, even, odd	nănE, EuEn, ădd	even	None

Chapter 2 Setup

2.1	Installation	2-2
	E5EZ-PRR Dimensions	2-2
	E5EZ-PRR Panel Cutout	2-2
	E5EZ-PRR Assembly	2-3
	Installing the E5EZ-PRR onto Panel	2-3
2.2	Wiring Terminals	2-4
	E5EZ-PRR Wiring	2-4
	Wires Connecting Notice	2-4
	Connecting Wires	2-5
	Event Input	2-6
	Communications	2-6
2.3	Installation Requirements	2-8
	Ensuring Long Service Life	2-8
	Decreasing Noise	2-8
	Ensuring High Accuracy Measurement	2-8

Installation 2.1

E5EZ-PRR Dimensions

(Unit: mm)

E5EZ-PRR Panel Cutout

(unit:mm)

- When installing, please insert the temperature gauge into the panel (thickness 1~8mm) holes, and install metal components in the upper and lower grooves .
- · Please ensure that the screws to metallic components are even, and locked.
- · When doing multiple installations, please ensure that surrounding temperature of the temperature gauge remains within the specified temperature range.

E5EZ-PRR Assembly

Installing the E5EZ-PRR onto Panel

- Insert the main unit into the panel using the installation holes (thickness 1-8mm). Remove the installation components from the back case, and temporarily secure them to the panel.
- (2) Use a screwdriver to firm the screws by turns the screws on the upper and lower sections. Turn the screwdriver through one rotation, and maintain balanced torsion.

2.2 Wiring Terminals

E5EZ-PRR Wiring

Wires Connecting Notice

- Independent input lead and power cords are used to protect the E5EZ-PRR and reduce the impact of external noise.
- Use AWG28 or larger twisted pair cable.

AWG28 or larger twisted pair cable Lead wire cross section greater than

0.081mm²

- We recommend that when wiring the E5EZ-PRR you use solderless terminals.
- Use 0.74 to 0.90N m torque on the wiring terminals.
- For the M3.5 screws, use the following types of solderless terminals.

Event Input

● When the E5EZ-PRR2B □ is used with event input, terminals 12 ~ 14 should be connected.

• Event input may be used in the following circumstances:

Contact input	ON: Maximum 1k Ω , OFF: Minimum 100k Ω
Noncontact input	ON Maximum residual voltage 1.5V, OFF: maximum current leak 0.1mA

Non contact input polarity is shown below:

● When the E5EZ-PRR201 □ is used for communications, terminals 12 ~ 14 should be connected.

Communication unit wiring diagram

- RS-232C connection 1:1
- Maximum length of cable is 15m.
- Use a sheathed twisted pair cable (at least AWG28).

(RS-232C)

Communications

- Communications (RS-485)
- When the E5EZ-PRR203
 is used for communications, the communications cable should be connected between terminals 12 and 13. Specify a two terminal transmission route, including the host of the terminal node (i.e. link terminal connectors to two terminals). Maximum terminal resistance is 54Ω.

 For communications, in order to meet EN61326 CLASS A transmission protection standards, add a magnetism link (TDK:ZAT1730-0730) between the K3SC and the controller.

Communication unit wiring diagram

RS-485 connection can be 1:1 or 1:N. When using 1:N connections, a maximum of 32 units can be connected, including the host. sheathed twisted pair cable (no smaller than AWG28), with the main cable 500m or less.

cablereference diagram

No smaller than AWG28 cross section of at least 0.081mm²

2.3 Installation Requirements

Ensuring Long Service Life

Use the temperature controller in the following environments: temperature:- $10^{\circ}C \sim +55^{\circ}C$ (with no condensation or icing) humidity: $25\% \sim 85\%$ (RH)

When installing the temperature controller on the control panel, ensure that the temperature controller's surroundings (not the panel's surroundings) do not exceed 55° C.

The service life of the electronic devices like the temperature controllers is determined not only by the number of times the relay is switched but also by the service life of internal electronic components. The service life of the components is influenced by the surrounding temperature: the higher the temperature, the shorter the service life, and the lower the temperature the longer the service life; therefore lowering the internal temperature will increase the service life of the temperature controller.

When using or storing any model of temperature controller within the appropriate temperature and humidity ranges, when two or more temperature controllers are in close proximity either horizontally or vertically, heat radiation raises their internal temperatures, thus shortening their service lives. In such a case, use forced cooling by fans or other means of air ventilation to cool down the temperature controllers. When providing forced cooling, however, be careful not to cool down the terminal sections alone to avoid measurement errors.

Decreasing Noise

To avoid noise interference, the temperature controller's wires on the electrical box must be kept far away from high voltage/large current power lines. Likewise wires should not be run parallel to or share the same circuit with power lines. Using independent conduits and wire guides, or sheathed wires, is also effective. Install surge absorbers or noise filters on all noise producing peripheral devices (especially electronic devices, transformers, solenoids, and other devices containing magnetic coils or inductors).

If using a noise filter with the power supply, first confirm the voltage and the current, then mount the noise filter as near as possible to the temperature controller.

Set up the temperature controller, along with its power supply, as far as possible from devices that generate strong, high frequency waves (high-frequency welders, high-frequency sewing machine etc.) and devices that generate surges.

I Ensuring High Accuracy Measurement

When extending or connecting the thermocouple lead wire, be sure to use compensating wires that match the thermocouple types.

When extending or connecting the lead wire of the platinum resistance thermometer, be sure to use wires that have low resistance, used for electrical impedance of three pieces of wire.

When wiring the platinum resistance thermometer to the temperature controller, keep the wire route as short as possible. Separate this wiring away from the power supply wiring and load wiring to avoid inductance or other forms of noise.

Mount the temperature controller so that it is horizontally level.

If the measurement accuracy is low, check to see that if input float has been set correctly.

Chapter 3 Basic Operations

3.1	Initial Setting Samples	3-2
3.2	Set Input Type	3-4
	Input Type	3-4
3.3	Selecting °C/°F	3-6
	Temperature Unit	3-6
3.4	Setting Output Specifications	3-7
	Direct/reverse Operation	3-7
3.5	SP Setting	3-9
	SP Modifying	3-9
3.6	Verifying PID Constants (AT and manual settings)	3-10
	AT (auto-tuning)	3-10
	Manual Settings	3-12
3.7	Alarm Output	3-14
	Alarm Type	3-14
	Alarm Value	3-15
	Alarm Delay	3-16
3.8	Ceramic Kiln Setting Position Proportional Control .	3-17
	Application Examples	3-17
	Wiring	3-18
	Settings	3-18
	Adjustment	3-19
	Fixed settings for position proportional control	3-20
3.9	During Manual Control	3-21
3.10	Operation Requirements	3-22
-		

3.1 Initial Setting Samples

The settings are made in the parameters in setup menus, the O and \bigcirc keys are used to switch between setting levels. The time which the key is held down continuously determined which setting level to access. This section contains two typical settings as examples.

 Typical examples

Example 1

Input Type	:	5 K thermocouple -200°C to 1300°C
Control Mode	:	PID control
Alarm 1 Type	:	2 upper limit (deviation)
Alarm Value 1	:	20°C(deviation)
Setting Value	:	100°C

3.2 Set Input Type

Input types include platinum resistance thermometers, thermocouples, noncontact temperature sensors, and analog input. Input type should be set based on the type of sensor being used. Product specifications include thermocouple/ platinum resistance thermometers multi-input and analog input, all of which require different setting values. Please be sure to verify what type of machine you are using.

Set input type for a "-20.0°C to 500.0°C K thermocouple".

- (1) Press the O key for 3 or more seconds, and from the "operation level" access the "initial settings level".
- (2) Press the key, input all necessary sensor set points. When using a K type thermocouple (-20.0°C to 500.0°C), input "6" as the setting.
 - Note: 2 seconds after changing parameters, if the \bigcirc or \boxdot keys on the operation panel have not been pressed, then the settings will be fixed.

Input Type

Input Type	Name	Set Point	Input Temperature Setting Range		
		0	-200 ~ 850 (°C)	/-300 ~ 1500 (°F)	
Platinum	Pt100	1	-199.9 ~ 500.0 (°C)	/-199.9 ~ 900.0 (°F)	
resistance		2	0.0 ~ 100.0 (°C)	/0.0 ~ 210.0 (°F)	
er	IP+100	3	-199.9 ~ 500.0 (°C)	/-199.9 ~ 900.0 (°F)	
	JFIIUU	4	0.0 ~ 100.0 (°C)	/0. 0 ~ 210.0 (°F)	
	ĸ	5	-200 ~ 1300 (°C)	/-300 ~ 2300 (°F)	
	r r	6	-20.0 ~ 500.0 (°C)	/0.0 ~ 900.0 (°F)	
		7	-100 ~ 850 (°C)	/-100 ~ 1500 (°F)	
	5	8	-20.0 ~ 400.0 (°C)	/0.0 ~ 750.0 (°F)	
		9	-200 ~ 400 (°C)	/-300 ~ 700 (°F)	
	I	22	-199.9 ~ 400.0 (°C)	/-199.9 ~ 700.0 (°F)	
Thermocoupl	E	10	0 ~ 600 (°C)	/0 ~ 1100 (°F)	
е	L	11	-100 ~ 850 (°C)	/-100 ~ 1500 (°F)	
	U	12	-200 ~ 400 (°C)	/-300 ~ 700 (°F)	
		23	-199.9 ~ 400.0 (°C)	/-199.9 ~ 700.0 (°F)	
	N	13	-200 ~ 1300 (°C)	/-300 ~ 2300 (°F)	
	R	14	0 ~ 1700 (°C)	/0 ~ 3000 (°F)	
	S	15	0 ~ 1700 (°C)	/0 ~ 3000 (°F)	
	В	16	100 ~ 1800 (°C)	/300 ~ 3200 (°F)	
	10°C ~ 70°C	17	0 ~ 90 (°C)	/0 ~ 190 (°F)	
Non-	60°C ~ 120°C	18	0 ~ 120 (°C)	/0 ~ 240 (°F)	
temperatur e sensor	115°C ~ 165°C	19	0 ~ 165 (°C)	/0 ~ 320 (°F)	
ES1B	140°C ~ 260°C	20	0 ~ 260 (°C)	/0 ~ 500 (°F)	
Analog Input	0 ~ 50mV	21	Applicable s -1999 ~ 9999 o	caling range: r-199.9 ~ 999.9.	

Input type list

• Initial setting value is $\lceil 5 \rfloor$.

	Input Type	Specific ations	Set Point	Input Temperature Setting Range
Analog Input Type	Current Input	4 ~ 20mA	0	One of the following ranges applies, depending on measurements
		0 ~ 20mA	1	-1999 ~ 9999
	Voltage	1 ~ 5V	2	-199.9 ~ 999.9
	Input	0 ~ 5V	3	-19.99 ~ 99.99
		0 ~ 10V	4	-1.999 ~ 9.999

The shaded range indicates the initial settings	The	shaded	range	indicates	the	initial	settings
---	-----	--------	-------	-----------	-----	---------	----------

Initial setting value is $\lceil 0 \rfloor$.

(

3.3 Selecting °C/°F

Temperature Unit

- Select "°C" or "°F" as the temperature unit.
- Under "initial level" -> "temperature unit" set the temperature unit. Initial value is "L: Celsius".

Select "°C".

- (1) Press the O key for 3 or more seconds, and from the "operation level" access the "initial settings level".
- Press the e key, select the "temperature unit" parameter.
 Press the or key and select "L" or "F".
 L: Celsius F: Fahrenheit
- (3) Press the O key for 1 or more seconds, to return to the "operation level".

Operation Procedure Operation Level

100.0

Initial Setting Level

5

Input Type

Temperature Unit

Operation Level

Present value/set value/valve open percentage

3.4 Setting Output Specifications

Direct/reverse Operation

- ār Ell
- "Direct operation" indicates that MV increases as the process value increases. In contrast, "reverse operation" indicates that MV increases as the process value decreases.

For example, for the present values (PV) (temperature) used in heating control systems, is lower than the set point (SP) (temperature), or the present values (PV) (temperature) the cooling control system present values (PV) is higher than the set point (SP), MV increases in proportion to the difference between PV and SP.

The processes described above refer to "reverse operation" for heating control systems and "direct operation" for cooling control systems.

 Direct/reverse operation can be set under the "direct/reverse operation" parameter (initial settings level). The "direct/reverse operation" parameter's initial setting is "reverse operation".

3.5 SP Setting

SP Modifying

Operation Level

When the power supply is connected, the "operation level" will be displayed. (No. 1 display) is the process value, (No. 2 display) is the set point, (No. 3 display) is the valve open percentage.

- When the "operation/adjustment protection" parameter is set to "3", the set point cannot be changed. For details please see "4.8 Using the Key Protection Level".
- "Present value/ set point" parameter (operation level). Press the A and keys, modify the set point, and set all necessary set points. Within 2 seconds of setting the new value, the new set point will be fixed.
- Multiple set point (SP1 to SP4) are possible (Refer to page 5-14).

Operation Procedure

Operation Level

In this example, the set point changes from "0°C" to "200°C".

(1) Normally, the "present value/ set point" parameter is displayed. The set point is "0°C".

(2) Use the key, to change the set point to "200°C".

3.6 Verifying PID Constants (AT and manual settings)

■ AT (auto-tuning)

- When using auto-tuning, the program will force modifications in operation volume to calculate the set point's optimal PID parameter, and calculate the unique automatic settings of the controlled object (the "limit cycle method").
- Select "an: Execute AT" execute AT (auto-tuning), select "aFF: Cancel AT" to cancel AT (auto-tuning). When AT is finished, "an" will fall-back to "aFF" automatically.
- In the "adjustment level", the "proportional band (P)", "integral time (I)", and "derivative time (D)" parameters indicate the AT (auto-tuning) results.

• Explanation

When the "execute/cancel AT" parameter is set to "ON", AT (auto-tuning) is activated. During AT execution, the "execute/cancel AT" parameter flashes on the No. 1 display. When AT is finished, the "execute/cancel AT" parameter goes off, and No. 1 display stops flashing.

If while AT is executing you switch to the "operation level ", No. 2 display will flash to indicate that AT is executing.

When AT is executing

When AT is executing, only the "communication writing", "run/stop" and "execute/cancel AT" parameters may be changed. Other parameters may not be changed.

Using auto-tuning (AT).

Manual Settings	Independent PID parameters may be set manually for the "proportional band", "integrate time", and "derive time" parameters under "adjustment level".			
Operation Procedure	In this example, the "proportional band" parameter is set to "10.0", the "integral time" parameter is set to "250", and the "derivative time" parameter is set to "45".			
Adjustment level Execute/cancel AT	(1) Press the O key to switch from "operation level" to "adjustment level".			
Proportional Band	(2) Press the 🖾 key to select "proportional band".			
το τ τ μ.8dΣ	(3) Use the event the parameter to "10.0".			
Integral Time	(4) Press the 🖙 key and select "integral time".			
	(5) Use the key to set the parameter to "250".			
Derivative Time	(6) Press the 🔄 key and select "derivative time".			
d 45 <i>L.RdJ</i>	(7) Use the key to set the parameter to "45".			
	(8) Press the O key to return to "operation level".			
Proportional operation	When the PID constants I (integral time) and D (derivative time) are set to "0", control will be by proportional operation. The default set point becomes the central value of the proportional band.			

• When tuning P (proportional band)

• When tuning I (integral time)

When I is increasing	Set Point	The present value needs a long time to reach the set point. Overshoot/undershoot or vibration still occurs after stabilization.
When I is decreasing	Set Point	When overshoot/undershoot or vibration occurs, and the curve is still increasing rapidly.

When tuning D (derivative time)

When D is increasing	Set Point	When overshoot/undershoot and stable time decreases, but the curve itself experiences slight vibration.
When D is decreasing	Set Point	Overshoot /undershoot increases, it takes a long time for present values to reach its set point.

Alarm Output 3.7

- Alarm output is determined by "alarm type" and "alarm hysteresis".
- The "alarm type", "alarm value", "upper limit alarm" and "lower limit alarm" parameters are explained below.

Alarm Type

Set Value	Type	Alarm Output Operation	
Set value	Туре	When alarm value ${f X}$ is positive When alarm value ${f X}$ is negative	
0	No alarm function	Output	OFF
1	upper and lower limits *1		*2
2	upper limit	ON → X ← OFF SP	ON →X ← OFF SP
3	lower limit		ON → X ← OFF SP
4	upper and lower limit range *1	ON →LLH OFF SP	*3
5	standby sequence upper and lower limits *1		*4
6	standby sequence upper limit	ON → X ← OFF SP	ON X - OFF SP
7	standby sequence lower limit		ON OFF SP
8	absolute value upper limit		ON ←X→ OFF 0
9	absolute value lower limit		
10	standby sequence absolute value upper limit		ON ←X→ OFF 0
11	standby sequence absolute value lower limit		

*1: Each alarm point my be set independently with "L" and "H" representing the upper and lower limit values, and set points 1, 4, and 5. *2: setting value: 1 upper and lower limit alarms

case 1	case 2	case 3 (Always	; ON)	
L H SP	SPL H	I SP H	I H< 0.L <0	
H< 0.L >0 H < L	H> 0.L <0 H > L	H LSP	I H< 0.L >0 H ≥ L	
		SP H L	∐ H> 0.L <0 H ≤ L	
*3: setting value: 4 Upper and lower limit range alarm				

case 1 case 3 (Always OFF)

	case 2	L SP H
H< 0.L >0 H < L	H> 0.L <0 H > L	H = H< 0.L >0 H L SP H ≥ L
		H> 0.L <0 SP H L H ≤ L

*4: setting value : 5 standby sequence upper and lower limit alarms

*The upper and lower limit alarms described above

- In cases 1 and 2, if there is significant overlap between the upper and lower limit values after hysteresis, the alarm will always be OFF.

Examples of case 1 and 2 : In case 3, the alarm is always OFF.

*5: setting value: 5 standby sequence upper and lower limit alarms If there is significant overlap between the upper and lower limit values after hysteresis, the alarm will always be OFF.

Alarm types include "alarm1 ~ 2" (initial settings level), and each should be set individually. Initial value is "2: Upper limit".

Alarm Value	
Lower Limit Alarm Value	 On the previous page, "X" refers to the alarm value. When setting the upper and lower limits, "H" represents the upper limit, and "L" represents the lower limit. For shifted upper and lower limit alarm values, upper and lower limits should be set under "alarm upper limit 1 to 3" and "alarm lower limit 1 and 2" (aparetion lower)
Upper Limit Alarm Value	(operation level).
Operation Procedure	Set alarm1 to "upper limit alarm", and alarm value to "10°C". Relevant parameters and settings are given below. In this example, when the alarm value is exceeded by "10°C", the alarm output executes.
	"alarm1 type"="2: upper limit alarm" "alarm value 1"="10"
Initial Setting Level Input Type	(1) Press the O key for 3 or more seconds, and from the "operation level" access the "initial settings level".
Alarm 1 Type 1	(2) Press the c key, and select "alarm1 type". Verify that the "alarm type" parameter is set to "2" (initial value, upper limit alarm).
Operation Level 7 25 100 Present value/se value/valve oper percentage 1000 Present value/se value/valve oper percentage	(3) Press the O key for 1 or more seconds to return to the "operation level".
Alarm Value 1	(4) Press the 🖾 key, and select "alarm value1".
⁷ <i>RL - 1</i> 10	(5) Use the key to set the parameter to "10".

3.8 Ceramic Kiln Setting Position Proportional Control

Using potentiometer to read the degree of valve opening, along with Open and CLOSE tuning control is called position proportional control or ON/OFF servo control.

measurement devices.

Application Examples

Temperature Input Analog Signal Input Potentiometer PV SP-SP Ramp PID HU MV OUT1 OUT2

When using position proportional to control valves in combustion devices,

position proportional control should be used. See the following figure for

The SP ramp function allows limits to be placed on temperature changes which control the temperature within a specific range. This is useful for ceramic kilns, in which severe temperature changes may cause damage or corruption.

Wiring

Input should be connected to terminals 9, 10, and 11 depending on input type. The OUT1 terminal links to the position proportional valve OPEN side and the OUT2 terminal to the CLOSE side.

Settings

Use position proportional control type position proportional valves, with travel time (from fully closed to fully open) at 45 seconds to floating control. And use the SP ramp function at 10.0°C/minute to gradually change the present value. Related setting data and information are given below:

Direct Reverse	= [initial value)
「Closed/floating」	= 「FLăt: Floating」 (initial value)
[Travel time]	="45" second
SP ramp Set Point	= "10"

Travel time and SP ramp set point are set, other parameters use the initial values.

(1) Press the key O for 3 or more seconds, and from the "operation level" access the "initial settings level".

- (2) Press the 🖾 key repeatedly, select "ກັລະ: Travel time". Press the 🗟 key, set the set point to "𝔄5".
- (3) Press the key O for 1 second or more to return to the "operation level". When "present value/target value/valve open percentage" is displayed, press the key to set the target value to "250".
- (4) Press the key ⊙ for less than 1 second to switch from the "operation level" → "adjustment level".

■ Adjustment

For PID adjustment please execute AT. For detailsplease see "3.6 Verifying PID Constants (AT and manual settings)" page 3-10. Fixed settings After selecting position proportional control, "closed/floating", "electromechanical calibration", "Travel time", "position proportional dead band", for position "switch hysteresis", "potentiometer input error", "present value dead band" may proportional be used. control Closed/floating Closed control link potentiometer for valve open percentage feedback control. Floating control Potentiometer non-feedback valve open percentage control can be done without linkage to the potentiometer. For settings see page 5-26. Calibration and Calibration is similar to closed control or monitor valve opening control when travel time connected to a potentiometer. The "travel time" from valve completely open to valve completely closed is also set to self measuring. Floating control with no potentiometer connected also requires manual setting of "travel time". The time from valve completely closed to valve completely open is set as "travel time". For settings see page 5-27. Position The valve output period (the time it takes OPEN output and CLOSE output to **Proportional** switch from ON to OFF) is set as the "position proportional dead band", and hysteresis is set as "switch hysteresis". **Dead Band** Switch The relationship to the valve opening is given below: position proportional Switch position proportional hysteresis hysteresis **Dead band** ON

OFF

-100%

• **PV dead band** When the present value is in the present value dead band, then for control purposes present value = set point; this function presents unnecessary output when the present value approaches the set point. For settings see page 5-39.

4

0

MV- valve opening 100%

Potentiometer
 When the potentiometer produces errors under closed control, select control
 stop or switch to floating control to continue with control.

For settings see page 5-18.

3.9 During Manual Control

3.10 Operation Requirements

- (1) Output commences roughly 4 seconds after power is turned on; please take this into consideration when selecting a control circuit.
- (2) Please ensure that at least 30 minutes are provided for pre-heating.
- (3) When using self-tuning, turn on the temperature controller at the same time as the load (e.g heater), or connect the load before the temperature controller is turned on. If the temperature controller's power supply is turned on before the load is connected, then self tuning may not be accurate and control may not be optimal.

When pre-heating is complete and operation has begun, the power supply should be disconnected immediately after pre-heating is complete, then the temperature controller and load should be turned on simultaneously (the temperature control's power supply may also be turned on and off by switching from stop mode to run mode.)

(4) If the Temperature Controller is used close to radios, television sets or wireless devices, it may affect reception.

Chapter 4 Applied Operations

4.1	Input Shift Values	4-2
	Input Shift	4-2
	Calculating Input Shift Values (2 Point Shift)	4-3
	1 Point Shift Method	4-4
	2 Point Shift Method	4-4
	2 Point Temperature Input Shift Example	4-5
4.2	Alarm Hysteresis	4-6
	Standby Sequence	4-6
	Alarm Latch	4-6
	Shutdown on Alarm /Alarm Activation	4-7
	Alarm Operation Overview	4-7
	Alarm Delay Function	4-8
4.3	Calibrating Upper and Lower Limits (Analog Signal Input)	4-9
	Analog Signal Input	4-9
4.4	Using Event Input	4-11
	Setting Event Input	4-11
	Using Multiple Set Points	4-11
	Key Operation Settings	4-12
	Setting	4-12
	Using Run/Stop Control	4-14
4.5	Setting SP Upper and Lower Limit Values	4-15
	Set Point Limits	4-15
	Settings	4-16
4.6	Using the SP Ramp Function (to limit rate of SP change)	4-17
	SP Ramp	4-17
4.7	Switching to the Advanced Function Level	4-19
4.8	Using The Key Protection Level	4-20
	Key Protection	4-20

4.1 Input Shift Values

Input Shift

- Displays the input shift type that accords with the sensor selected under the present "input type" parameter.
- 2 point shift is only used with non-contact type temperature sensors.
- When selecting 1 point shift, set the "temperature input shift" parameter set point to the entire temperature input range. For example, if the set point is 200°C, if the input shift value is set to "1.2°C", then the set point will be considered 201.2°C.

In this example, 1 point input shift is used to set the K type thermocouple input value shift to "1°C"

Operation Procedure

Operation level

- (1) Press the O key, switch from "operation level" to "adjustment level".
- (2) Press the 🗠 key, select "temperature input shift".
- (3) Use the key to set it to "1.0".
- (4) Press the O key, return to "operation level". The set point is now 1°C higher than it was before.

2 point shift

	5	H	Up ter inp
П	5		Lo ter

- Ipper limit Emperature Iput shift ower limit Emperature Iput shift
- By independently setting the sensor's upper limit input shift values and lower limit input shift values, you can shift the input temperature range on a non-contact temperature sensor. In other words, by setting different shift values for the two ends of the temperature range, all the values in the range will be shifted. For example, if the upper limit value is "2°C", and the lower limit value is "1°C", then the entire sensor range will have an average shift value of 1.5°C at 50% input.
- Under "upper limit temperature input shift values" set the upper limit value, and under "lower limit temperature input shift values" set the lower limit value.

Calculating Input Shift Values (2 Point Shift)

When a non-contact temperature sensor model No. ES1B is connected to the temperature controller model E5EZ-PRR,seeral degrees to several tenth of degrees shift will occur. Therefore a 1 point or 2 point shift compensation must be used for the read out value. When the detection controller error sensor bias current reaches the output impedance of the non-contact temperature sensor, a shift will occur. The point shift will only occur with a non-contact temperature sensor, and may not be used with other input types.

[Set Up]

- (1) Set the controller's temperature range based on the non-contact temperature sensor's input specifications.
- (2) As shown in figure 1, use a temperature gauge capable of measuring the temperature of the controlled object, in order to execute 1 point shift and 2 point shift.

Figure 1 Compensating for a non-contact temperature sensor

Upper Limit

Lower Limit

Input Shift

Temperature

Temperature Input Shift

1 Point Shift Method

Adjustment level

2 Point Shift

Method

- (1) In figure 1, select a set point near the controlled temperature value of the controlled object. Assume that temperature (C) and temperature (B) of the controlled object are the same.
- (2) Check the controlled object's temperature (B) and the controller's reading (A). Input shift values may be calculated as shown below, with "in5L" and "in5H" set to the same value.

controlled object's temperature (B) - controller reading (A)

figure 2 shows result of a 1 point temperature input shift

(3) After setting input shift values, check the controlled object's temperature (B) and the controller reading (A), if they are roughly equal, then the temperature input shift has been successful.

figure 2 1 Point Temperature Input Shift

To increase the accuracy of the reading values across the sensor range, the 2 point input shift method may be used.

- To shift two points of the controller's reading, use two points near room temperature and the controlled temperature of the controlled object. Therefore, set the controlled object's temperature settings near room temperature and the set point, then check the controlled object's temperature (B) and controller reading (A).
- Use the reading and temperature shift values from step 1, as well as equations
 (1) and (2), to calculate the upper and lower limit temperature input shift values.
 figure 3 shows the results of the 2 point temperature input shift.

figure 3 2 Point Temperature Input Shift

• Use the following method to calculate the lower limit temperature input shift values.

$$\sum_{r=1}^{r} \sum_{r=1}^{r} \frac{YL - Y1}{Y2 - Y1} \times \{(X2 - Y2) - (X1 - Y1)\} + (X1 - Y1) \dots Eq 1$$

• Use the following method to calculate the upper limit temperature input shift values.

$$Ln5H = \frac{YH - Y1}{Y2 - Y1} \times \{(X2 - Y2) - (X1 - Y1)\} + (X1 - Y1) \dots Eq^2$$

- (3) After setting *in5L* and *in5H* as the calculated value, check the controller reading (A) and controlled object's temperature (B).
- (4) When shifting input near room temperature (environmental temperature) and set point 2 point, you must select two points near the ends of the sensor's measurement range, to increase the overall accuracy across the sensor's measurement range.

This example uses ES1B non-contact temperature sensor, temperature range $0^{\circ}C \sim 260^{\circ}C$ YL and YH in equations 1 and 2 are set as follows: lower limit temperature YL set to $0^{\circ}C$; upper limit temperature YH set to $260^{\circ}C$. Check the controlled object's temperature.

When room temperature X1 is 25° C, the controller reading Y1 is 40° C, the temperature near the set point X2 is 110° C, and the controller reading Y2 is 105° C,

lower limit temperature input shift values

. .

$$Ln5L = \frac{0-40}{105-40} \times \{(110-105) - (25-40)\} + (25-40) = -27.3 (°C)$$

upper limit temperature input shift values

$$Ln5H = \frac{260 - 40}{105 - 40} \times \{(110 - 105) - (25 - 40)\} + (25 - 40) = 52.7 (°C)$$

Lower Limit Temperature Input Shift

Insk

L.84J

53

Adjustment level

Upper Limit Temperature Input Shift

4-5

4.2 Alarm Hysteresis

Shutdown on Alarm /Alarm Activation

- When the E5EZ-PRR is set to "shutdown on alarm", alarm output will normally be activated. When set to "activate on alarm", alarm output will usually transfer output or be off.
- Alarm type and "shutdown on alarm (usually on)"/"activate on alarm" (usually off) can all be set independently.
- Using the "activate alarms 1 and 2 on alarm" parameter, the "shut down on alarm/activate on alarm" (advanced function level) can be set. The Initial value is "a-ā: shutdown on alarm".

	Alarm output function	Output	Alarm LCD display light
Shutdown on	ON	ON	ON
alarm	OFF	OFF	OFF
Activate on	ON	OFF	ON
alarm	OFF	ON	OFF

Any shutdown on alarm/activate on alarm setting, when power is interrupted and within two seconds of power connectivity, the alarm output will stop (relay contact point connected).

Alarm Operation Overview

The figure below summarizes the above mentioned alarm functions (with alarm type set to "standby sequence with lower limit", or E5EZ-PRR set to "shutdown on alarm").

When the "activate alarm1 on alarm" (advanced function level) parameter is set to "activate on alarm", the heater burnout alarm and input error output will all "activate on alarm".

Alarm Delay Function

- When "alarm type" is not set to "0: no alarm function", then alarm ON/OFF delays can be set independently.
- Using the "alarm 1 ~ 2 ON/OFF delay" parameter (advanced function level), users can set alarm delay times independently. The initial value is "2: alarm no delay".

The following figure uses examples of absolute upper limit alarms to illustrate the effect of delay function on alarm output.

During a delay, if an alarms ON/OFF status changes, delay will occur again

Note:

- During a delay, the alarm light and communication status will also be delayed. 1.
- 2. During a delay, if an alarms ON/OFF status changes, delay will occur again.
- 3. 4.
- will occur again. When power is turned on, or the initial level changes to the operation level, the ON delay will be used. When switching to the initial level, all alarm output immedi-ately turns OFF, without using OFF delay. The alarm will not turn ON if the time that the alarm is ON is equal to or less than the ON delay set time. Also, the alarm will not turn OFF if the time that the alarm is OFF is equal to or less than the OEE delay uset time. 5. or less than the OFF delay set time.
- If an alarm turns OFF and then back ON during the ON delay time, the time will be remeasured from the last time the alarm turns ON. Also, if an alarm turns ON and then back OFF during the OFF during the OFF delay time, the time will be 6. remeasured from the last time the alarm turns OFF.

Darameter				
1 drameter		Symbol Parameter: Level		Explanation
	Γ	RL X 🗆	alarm 1 ~ 2 hysteresis : advanced function level	alarm
		rESE	standby sequence reset: advanced function level	alarm
		<i>R</i> L □ n	alarm 1 ~ 2 activate on alarm: advanced function level	alarm
		8 🗆 ön	alarm 1 ~ 2 ON delay advanced function level	alarm
		R 🗆 öf	alarm 1 ~ 2 OFF delay advanced function level	alarm
		: 1,2		

4.3 Calibrating Upper and Lower Limits (Analog Signal Input)

Analog Signal Input

 When analog signal input (voltage input, current input) is selected, you can set the associated control scaling.

- Calibration can be done using the "scaling upper limit", "scaling lower limit"and "decimal point" parameters (initial level). After the temperature input type is selected, these parameters cannot be used.
- "Scaling upper limit" parameter setting input upper limit value indicates. The indicated physical value; "scaling lower limit" parameter setting input lower limitvalue. The indicated physical value; The "decimal point" parameter is used to specify the place after the decimal point.
- The following figure is an example of 0 ~ 50mV input calibration. After calibration, humidity can be read directly.

4.4 Using Event Input

Setting Event Input

Run/stop control and Auto/Manual selection can be done with event input assignment 1 and 2.

The following table shows "number of multi set points used ", it gives event input 1 and 2 function assignment.

When 2 or 4 multiple set points are used, use the "number of multi-set points used" parameter, which determines whether or not "event input assignment 1" and "event input assignment 2" are displayed.

No. of	Set	Setting Event Input Function		It Function
Multi-SP Used	Event Input Assignment 1	Event Input Assignment 2	Event Input 1 Function	Event Input 2 Function
0	NONE or STOP or MANU "1"		none or Switching RUN/STOP or Switching Auto/Manual "1"	
1	- (Not displayed)	NONE or STOP or MANU	2 set points multi set points (alternate set point 0/1)	No or Switching RUN/STOP or Switching Auto/ Manual
2	- (not displayed)		4 set points r (alternate set	nulti set point point 0/1/2/3)

 *1 Only when using event input indicators 1 or 2 , the "stop (run/stop) switching" and Auto/Manual can be set.

Once "STOP" is assigned to one event input, the other side is set to "NONE" or "MANU".

When setting two external input set points, the "number of multi-SP used" parameter may be set to:

select set point (0/1)

When "number of multi-SP used" is set to "1" (initial value), two set points may be selected. This setting may not be changed. Set point 0 or 1 is indicated by the event input 1 status.

"Multiple set points" is a presetting set points 0 through 3 function. It uses both input event 1 and 2 to select set points.

When using E5EZ-PRR2B \Box , and the "number of multi-SP used" is set to "1" or "2", multiple set points can be used.

when "multi-SP used" is set to "1"

Event Input 1	Select Set Point	
OFF	set point 0	
ON	set point 1	

When "multi-SP used" is set to "2"

Event Input 1	Event Input 2	Select Set Point
OFF	OFF	set point 0
ON	OFF	set point 1
OFF	ON	set point 2
ON	ON	set point 3

*Event input the E5EZ-PRR2B \Box model. Event input ON/OFF should be used when the power is on. It can distinguish 50ms or more of input ON/OFF.

Using Multiple Set Points

 Using Event Input With Multiple

Key Operation Settings

Using "multi-SP" set point modification, "target value 0 ~ 3" can be changed . "Multi-SP" display conditions are as follows:

- For products without event input specifications, "use multi SP " is "ON".
- For products with event input specifications, "number of multi-SP used" is "0", "use multi-SP " is "ON".

The relationship between "multi SP" set point and the selected target value is given below:

Multi Set Point	Select Set Point	
0	set point 0	
1	set point 1	
2	set point 2	
3	set point 3	

Before setting "number of multi-SP used", cancel protection and switch to the "advanced function level". For details on canceling protection, see "4.8 Using The Key Protection Level".

- (1) Press the O key for 3 or more seconds, from the "operation level" switch to the "initial level"
- (2) Press the 🖂 key ,select "switch to advanced function level".
- (3) Use the 🔊 key enter "-169" (password).
 - Using the Rev or preserve this setting for 2 or more seconds, to switch to the "advanced function level".

Advanced Function Level

Parameter Initialization

Number of Multi-SP Used (4) Press the $\ensuremath{\fbox{e}}$ key , select "number of multi-SP used".

(5) Press the key , set the parameter to "2".

- (6) Press O to return to the "initial level".
- (7) Press the O key for 1 second or more, return to the "operation level".

Using Run/Stop Control

When "event input assignment 1" or "event input assignment 2" is set to "run/ stop", if event input 1 or 2 is set to "OFF", control will start. When set to "ON ", control will stop.

Setting	Input Contact Point	Status
event input 1 or 2	ON	stop
event input 1 or 2	OFF	RUN

Note: when "number of multi-SP used" is set to "0" or "1", and not "2", run/stop may be controlled by event input

Based on "number of multi-SP used" settings, event input indicators 1 and 2 are used as follows:

Number	Setting		Event Input Function	
of Multi- SP Used	Event Input Assignment 1	Event Input Assignment 2	Event Input 1 Function	Event Input 2 Function
	none	stop	none	run/stop switching
0	stop	none	run/stop switching	none
	none	none	none	none
	- (setting data not displayed)	stop	2 set point multi set point (set point 0/1 switching)	run/stop switching
	- (setting data not displayed)	none	2 set point multi set point (set point 0/1 switching)	none
2	 (setting data not displayed) 	 (setting data not displayed) 	4 set point multi set point (set point 0/1/2/3 switching)	

- Number of multi-SP used set to 1 or 2, and event input indicator 1 or 2 set to "do not display", setting will automatically change to "none".
- Number of multi-SP used set to "0", and input indicator 1 and 2 setting, run/ stop will only indicate one event input. The other event indicator will automatically be set to OFF.
- When the run/stop function is used as event input , run/stop will not display in the operation level.

Symbol	Parameter: Level	Explanation
Eu-	event input 1 indicator: advanced function level	
Eu-2	event input 2 indicator: advanced function level	Used with event input function
Euro	number of multi-SP used: advanced function level	

Parameter

4.5 Setting SP Upper and Lower Limit Values

Set Point Limits

A set point's setting range is limited by the set point limit. The set point limit is used to prevent the controlled object from exceeding the normal temperature range. The set point limit's upper and lower limit values are set by "set point upper limit" and "set point lower limit" parameter in the "initial level". When resetting the set point limit, be sure to remember that if the set point exceeds the limit range, then it will be automatically returned to the set point limits upper or lower limit value. When input type and temperature unit change, the set point limit is forcibly reset to within the sensor setting range.

Parameter

Symbol	Parameter: Level	Explanation
5L - X	set point upper limit: initial level	used to limit set point settings
5L - L	set point lower limit: initial level	used to limit set point settings

4.6 Using the SP Ramp Function (to limit rate of SP change)

SP Ramp

Using the SP Ramp function , the controller can operate based on rate of change limit value. When SP ramp limits are in place, the set point is called the "SP ramp".

The rate of change of the SP ramp can be set using the "SP ramp set point" parameter. The initial value of the "SP ramp set point" is "OFF", and the "SP ramp function" initially is not effective.

Using the "SP ramp set point" parameter (operation level), the rate of change of the ramp's set point can be monitored. This parameter should be used to monitor the SP ramp.

Operation is similar to multi set point set point switching.

Parameter

Symbol	Parameter : Level	Explanation
6L - H	MV upper limit : adjustment level	Used to limit MV
ōL-L	MV lower limit : adjustment level	Used to limit MV
5L - X	Set point upper limit : initial level	Used to limit SP setting
51 - 1	Set point lower limit : initial level	Used to limit SP setting
SPrt	Sp ramp set point : adjustment level	Limit rate of SP change

Getting Started

If the SP ramp function is activated , when the E5EZ-PRR is turned on, or switched from "stop" to "run", When the process value reaches the SP ramp set point, it follows the same method used when the set point changes.Under this condition, Before changing process value, controller will operate by process value as the setting value.

The SP ramp direction will change according to the relationship between the process value and the set point.

- SP Ramp Operation Limits
- When the SP ramp finishes, auto-tuning begins.
- When control stops or has an error, the SP ramp function is not effective.

4.7 Switching to the Advanced Function Level

(4) Set the set point to "0".

In the initial setting level, the advanced function level is protected and cannot be accessed. To switch to the advanced function level, first cancel protection in the "protection level". Please see "4.8 Using the Key Protection Level".

Protection Level

(1) In the "operation level", simultaneously press the 🖸 and 🖻 keys for 3 seconds or more.

* Key timing can be set using "protection level switching time" (advanced function level) .

(2) The controller will switch to the protection level and display "operation / adjustment protection".

"Initial/Communication: Protection"

(3) Press the 🖂 key once to switch to "initial/communications protection".

Operation Level

PV/SP/Valve Open %

Input Type

(5) Simultaneously press the \bigcirc and \boxdot keys to return to the "operation level".

Initial Setting Level

Advanced Function Level

Switch to Advanced Function Level

- (6) Press the O key for 3 seconds or more to switch from the "operation level" to the "initial level".
- (7) Press the \square key , select thse "switch to advanced function level" parameter .
- (8) Use the key to input the password ("-169"), then press the key or wait 2 seconds or more to switch from the "initial level" to the "advanced function level".

Using The Key Protection Level 4.8

Key Protection

Press the O and Reverse simultaneously for 3 seconds or more to switch to the protection level.

* Key timing can be set in the "protection level switch timing" (advanced function level).

- The protection level protects parameters that are changed after operation starts to prevent accidental modification.
- Protection level settings can use the parameter's range .

Initial/

Protection

IEPE

Setting

LPrt

Modification Protection

YFBF

<u>a</u>ff LPrE

Communication

The relationship between set point and protection range is shown below

l evel		Set Point				
Level		0	1	2	3	
Operatio	Present Value	0	0	0	0	
n Level	Set Point	Ø	Ø	Ø	0	
	Other	O	O	×	×	
Adjustme	nt Level	O	×	×	×	

- © :can be displaved
- and changed
- :can be displayed
- imes :cannot be displayed or switched to other
- When this parameter is set to "0", no parameters are protected.
- The initial value is "0".

These protection level limits affect the initial level, communications level, and advanced function level.

Set Point	Initial Level	Comm. Level	Advanced Function Level	\bigcirc :can switch to other
0	0	0	0	levels
1	0	0	×	other levels
2	Х	×	×]

Initial value is "1".

This protection level protection setting will not be affected by panel keys.

Set Point	Explanation
OFF	Settings can be changed with keys.
ON	Settings cannot be changed with keys. (protection level can be changed.)
The init	ial value is not to "OFF"

The initial value is set to "OFF".

Automatic/manual key protection

Using the protection key.

Set Point	description
OFF	Use the AM key to switch between manual/automatic
ON	Cannot use the AM to switch between manual/automatic
The initia	al value is "OFF"

Chapter 5 Parameters

Contents of This Chapter	5-2
Definition of the symbols used in this chapter	5-2
Parameter display	5-2
Parameter explain order in this chapter	5-2
Manual Control Level	5-3
Protect Level	5-5
Operation Level	5-7
Adjustment Level	5-12
Initial Level	5-20
Advanced Function Level	5-28
Communications Level	5-41

Contents of This Chapter

Definition of the symbols used in this chapter

Explaining parameter function.

Explaining setting range examples and parameter initial values.

Explaining monitoring ranges.

Explaining use of parameters.

Explaining related parameters and categories.

Reference

Parameter display

Parameters can only be displayed if the conditions given to the right are met. Note that protected parameters are not displayed regardless of whether the conditions are met.

Parameter explain order in this chapter

Parameters are explained by level.

Parameters that may be used in each level are given on the first page of each section. The names of the parameters are ordered according to the display sequence used by the E5EZ-PRR.

When using manual operation, this level is displayed. Setting valve open percentage.

*1 Switching from the manual control level to key control can only be done from the current operation level (initial values).

Accessing the manual control level.

In the operation /adjustment level, press the AM key for 1 second or more to change to manual mode, i.e. switch to the manual control level. In the future during manual operation only "process value/set value/valve open percentage" will be displayed. When "process value/set value/valve open percentage" is displayed in the manual control level, press the AM key for 1 second or more to switch to manual/auto mode, change to the operation level, and display the operation level's initial data.

Manual MV

Manual MV

During Manual Operation

Setting manual control valve open percentage

Manual output display

Under manual control level, "process value/set point/manual MV" are displayed, and MV may be set in manual mode. During proportional control, the No. 3 display shows the valve open degree; there is no potentiometer input, so potentiometer input errors are displayed as "----".

Manual input settings

Press the key, control output 1 (OPEN side output) will turn ON; press the key control output 2 (CLOSE side output) will turn ON.

Position proportional type

Control Mode	Monitoring Range	Units
Position proportional	-10.0 ~ 110.0	%

The E5EZ-PRR provides 4 protect functions, namely "Operation/Adjustment Protect", "Initial Setting/ Communications Protect", "Setting Change Protect". These 4 protect functions prevent unintentional changes from occurring when panel keys are pressed.

To switch from Operation Level to Protect Level by pressing O and Reverse key more than 3 seconds.

Setting of protected parameter are not displayed, therefore they cannot be changed.

Protect Level

This parameter determines the range of parameters protected. _____ indicates the initial value.

• Operation/adjustment protect

The relationship between set points and protect range is shown below.

Note

Level		Set Point				
		0	1	2	3	
	Process value	0	0	0	0	,
n level	Set Point	O	O	O	0	
	Other	O	O	×	×	
Adjustm	ent level	O	×	×	×	

) : display/change: Yes

⊃ : display: Yes

 Cannot display or switch to level

• When the set point is "0", there is no protect function .

Initial /communications protect

Restricts access to the "initial level", "communications level" and "advanced function level".

Set Point	Initial Level	Communications Level	Advanced Function Level	\bigcirc : can switch to other levels
0	0	0	0	× : cannot switch to other
1	0	0	×	
2	×	×	×]

• Setting Change Protect

Limits the ability to change settings by pressing keys.

Set Point	Explanation
OFF	Limits the ability to change settings by pressing keys.
ON	Doesn't limit the ability to change settings by pressing keys (Protect Level can be changed.)

Auto/manual key protect

Protect M key operations

Set Point	Explanation
OFF	The Am key can be used to switch automatic/manual
ON	The <i>key</i> cannot be used to switch between automatic/ manual

When the E5EZ-PRR is engaged in control, this level is displayed. Alarm values and monitor MV can be set in this level.

When the E5EZ-PRR is turned on, this level will be displayed automatically. Press the O key or O and e key to switch to other levels.

Proc	ess Value	"Add process value display" parameter must be "ON"。	None Display
Functions	The process v	value is displayed on No.1 display but not No.2 or No.3 displays.	
62		Monitor range	Units
0-0	Process	Input indicator range (see p.5-21)	EU
Monitoring	value		

Process value/set value/valve open percentage

Operation Level

Process value is displayed on no. 1 display, set point is displayed on no. 2 display, and valve open percentage on no. 3 display.

	Monitor Range	Setting Range	Units
Process value	Input indicator range (see p.A-10)		EU
Set point		Set point lower limit ~ Set point upper limit	EU
Valve open penentage	10.0~110.0%		%

Decimal point position depends on sensor type being used.

<u> - 5</u>P

See process value parameter.

Multiple set point (set points 0	Event input	ON:	parameter "number of multi SP used" must be set to "0" Parameter "number of multi SP used" must be set to	None Display
through 3)	Event input	OFF :	"ON" parameter "number of multi SP used" must be set to "ON"	None Display

Multiple set point allows the user to set 4 set points in the adjustment level (set points 0 through 3) . These values can be switched by pressing keys on the panel or by external input signals. In the parameter, input set points 0 through 3.

SP ramp set points

"SP ramp set point" parameter cannot be set to "OFF".

None Display

Units

EU

This parameter monitors the target value ramp set point.

The "ramp" function uses the form of the rate of change to limit the set point's width of variation. The set point is displayed under "target value ramp set point" (advanced function level). When the set point exceeds the pre-set ramp value, the set point will adjust to the set point of

Functions

SP: Set point lower limit ~ set point upper limit

Monitor Range

• Related parameters

the "present value /target value" parameter.

"process value/set value/valve open percentage" (operation level) (p.5-8) "SP ramp set point" (advanced function level) (p.5-17)

"set point upper limit", "set point lower limit" (initial level) (p.5-23)

The run/stop function cannot be set to event input indicators 1 and 2.

None Display

This parameter indicates run and stop.

When selecting "*r Un*: run", control executes. When selecting "5½ å^{*p*}: stop", control stops. when control stops, the stop light will come on. The initial value is "*r Un*"

Reference

When the run/stop function is controlled by event input, the run/stop function cannot be set by pressing keys on the panel.

<u> </u>	Alarm value 1	None Display
<u> </u>	Alarm value 2	Alarm type must be set to no alarm or upper or lower limit, upper or lower limit range or other than attached standby order sequence upper or lower limit.

This parameter is listed under alarm type, setting input value "X".

•	This parameter is used to set t	he alarm output 1	, 2 alarm value .
---	---------------------------------	-------------------	-------------------

 With temperature input, the decimal point is determined by the sensor currently in use. With analog signal input, the decimal point is determined by the "decimal point" parameter.

Setting range	Units	Initial value
-1999~9999	EU	0

The alarm type must be set to something other than upper or lower limit alarm.Related parameters

"Input type" (initial level) (p. 5-21), "scaling upper limit", "scaling lower limit", "decimal point" (initial level) (p. 5-22)

"Alarm 1 and 2 type" (initial level) (p. 5-24)

"Activate alarm 1 and 2 on alarm" "alarm 1 and 2 hysteresis" (from p.5-32 to p.5-33) "standby sequence reset" (p. 5-31), "alarm latch" (p. 5-36) (advanced function level)

None Display

When alarm 1 type (initial level) is set to upper or lower limit mode, this parameter is independently set to the upper or lower limit alarm value.

During the temperature input period, decimal point location is related to the sensor currently in use. With analog signal input, the decimal point is determined by the "decimal point" parameter.

> **Initial Value** 0

Setting Range	Units
-1999~9999	EU

Functions

Related parameters "alarm 1 type" (initial level) (p. 5-24) "standby sequence reset" (p. 5-31), "activate alarm 1 on alarm", "alarm 1

hysteresis" (p. 5-32), "alarm 1 latch" (p. 5-36) (advanced function level)

Lower limit alarm value 2

None Display

Alarm 2 type must be set to upper or lower limit, lower limit range or near the standby sequence upper or lower limit alarm.

When alarm 2 type (initial level) is set to upper or lower limit mode, this parameter is independently set to the upper or lower limit alarm value.

- This parameter is set to alarm 2 upper or lower limit value.
- During the temperature input period, decimal point location is related to the sensor currently in use. With analog signal input, the decimal point is determined by the "decimal point" parameter.

Setting Range	Units	Initial Value
-1999~9999	EU	0

Related parameters

"Alarm 2 type" (initial level) (p. 5-24)

"Standby sequence reset" (p. 5-31), "activate alarm 2 on alarm", "alarm 2 hysteresis"

(p. 5-32), "alarm 2 latch" (p. 5-36) (advanced function level)

This level is used for AT (auto-tuning) or setting control.

This level provides basic controller parameter settings for use with PID (proportional band, integral time and derivative time).

Press O the key for less than 1 second to switch from the operation level to the adjustment level.

- Adjustment level set points 0 ~ 3, are the set points used during transfer between multiple set point input.
- By setting the operation /adjustment protect to "0", the adjustment level parameters can be changed. If the
 protect level is set to values from "1" ~ "3" value, the adjustment level parameter will not be displayed.

Adjustment Level				
F Run/Stop AT	Page No.		Integral Time	Page No
712 ∂FF L.RdJ 	5-13	233 L.RdJ		5-16
Communications Writing	5-13	сс 40 1.865 сссс	Derivative Time	5-16
¥ œ 5 <i>P</i> -0 , , , , , , , , , , , , , , , , , , ,	5-14	↓ @ ňu-5 Höld	MV When Stopped	5-17
↓ @ \$ <i>P</i> SP 1	5-14	↓ @ ňu-£	PV Error MV	5-17
	5-14	↓ @	SP Ramp Setting	5-17
		685 L.RdJ □====	Value	
	5-14	ăL - H 105.0 1.843	MV Upper Limit Value	5-18
Temperature Input Shift	5-15	▼ ₩2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯	MV Lower Limit Value	5-18
Upper Limit Temperature	5-15	♥	Position Proportiona Dead Band	al 5-18
Lower Limit Temperature	5-15	↓ ∞ ŏ[-X as L.RdJ	ON/OFF Delay	5-19
Proportional Band	5-16			
(P)				

85	AT Execute/Cancel	operation level/adjustment level/ protect level operation	L.8dJ
This paramet	er executes AT (auto-tuning).		
Functions	 During auto-tuning, by for are calculated, and optim ("proportional band", "int 	cibly changing the MV, the controlled obje al set point PID parameters are automatic egral time" and "derivative time") .	ct's unique values ally set
Examples	 Under normal conditions, parameter, and execute A After AT finishes, this para 	this parameter is set to "בּֿדָּאַ". press און אַ אד. ameter automatically returns to "בֿדָּאַ".	or ⊠, to open the
Reference	 Related parameters "proportional band", "interesting" 	egral time", "derivative time" (adjustment	evel) (p. 5-16)

Eare	communications writing	The communications unit must be installed.
Functions	This parameter starts/stops the host to the temperature controller's parar	t (superior computer), from using communications to write neter function .
Settings	ON : activate writing OFF : deactivate writing initial value is OFF	
Reference	 Related parameters "MB command logic switching "communications unit No.", "H bit" (communications level) (p 	g" (advanced function level) (p. 5-38) baud rate", "data length", "communication parity", "stop b. 5-42)

Adjustment Level

58-0	Set Point 0		L.Rdi
5 <i>P</i> - (Set Point 1	set point 0 and 1 event ON: input event OFF input :	"number of multi SP used" set to 1 or 2, or "number of multi SP used" set to 0 "multiple settings" set to $\ \mbox{ON}\ \ .$ "multiple set point used" set to $\ \ \mbox{ON}\ \ .$
58-2	Set Point 2	set point 2 and 3 event ON: input	"number of multi SP used" set to 2, or "number of multi SP used" set to 0 "multiple settings" set to $\ \ \frac{\} ON\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
58-3	Set Point 3	event OFF input :	"multiple set point used" set to $\ \ \lceil ON \ \rfloor$.

When using the multiple set point function, these parameters are used to set multiple set points.

Using the panel's keys or event input, select set points for these parameters.

- After set points are changed, multiple set point's current parameter set point's can be linked and changed.
- During the temperature input, decimal point location is related to the sensor currently in use.

With analog signal input, the decimal point is determined by the "decimal point" parameter.

1

Reference

Setting Range	Units	Initial value
set point lower limit ~ set point upper limit	EU	0

Related parameters

"number of multi SP used" (advanced function level) (p. 5-29) "event input indicator 1" (advanced function level) (p. 5-30) "event input indicator 2" (advanced function level) (p. 5-30) "Multi SP used" (advanced function level) (p. 5-31)

.. ..

"process value" (operation level), "process value/set point" (operation level) (p. 5-8) "Input type" (initial level) (p. 5-21)

Temperature Input Shift Value

L.Adj

L.RdJ

Temperature input type "input type" parameter must be set to temperature input, but not for non-contact temperature sensors.

Sometimes the measured value may be different from the actual temperature. To compensate for this difference, the input shift value and input measured value can be added together and displayed as the measured value, and used for control.

The entire input range uses a fixed numeric shift (1 point shift). If the input shift value is set to "-1.0°C", then the measured temperature value deducts 1.0°C before being displayed as the measured value.

Setting Range	Units	Initial Value
-199.9~999.9	°C or °F	0.0

Related parameters
 "input type" (initial level) (p.5-21)

Upper Limit Temperature Input Shift Value

Lower Limit Temperature Input Shift Value

Temperature input type "input type" parameter can only be set to non-contact temperature sensor.

1 point shift uses the "temperature input shift" parameter to apply a fixed shift the entire input range, and 2 point shift uses two point (upper limit and lower limit) to shift the input range. By setting the upper or lower limi input shift value to a different value , 2 point shift can be more accurate than 1 point shift in compensating for the input range.

These parameters set the shift values of the upper limit and lower limit of the input range respectively (2 point shift).

Monitor Range	Units	Initial Value
-199.9~999.9	°C or °F	0.0

Related parameters	
"input type" (initial level)	(p. 5-21)

This parameter can be set as a PID parameter. Note that when using AT, the PID will be set automatically.

P refers to MV and deviation zone direct proportional control (control Using Proportional: errors). I provides control error integral time proportional control control. During proportional control integral deviation occurs frequently (control discrepancies) Using . So proportional and integral are used together. After a period of time, control integrals: discrepancies vanish and the set point matches the control temperature (process value). D provides control error derivative time proportional control. Because proportional control and integral control correct control errors, the control Using system will delay reaction to sudden temperature changes temperature. derivatives: derivative control makes use of pre-measured output proportional control, to facilitate correction of errors in advance.

Parameters	Setting Range	Units	Initial Value
proportional temperature input: 0.1~999.9		EU	8.0
band	analog input: 0.1~999.9	%FS	10.0
intogral timo	floating:1~3999	socond	222
integrai time	closed: 0~3999	second	200
derivative time	0~3999	second	40

Related parameters

"activate/deactivate AT" (adjustment level) (p. 5-13)

• "MV during error" refers to operation during error (off/hold/on).

Functions

	\bullet	Position	proportional	type
--	-----------	----------	--------------	------

Setting Range	Units	Initial Value
Hāld: hold/āPEn: open/Elā5: close	none	Hald

58-2	SP ramp set point	L.RdJ
	• This parameter specifies the rate of change of the SP ramp. Allo	w each unit time

- (min) maximum change width to be set to "SP ramp set point". But note that when SP ramp set point is set to "OFF", SP ramp function is not effective.
- With temperature input, the SP ramp set value's decimal point is determined by the sensor currently in use. During analog signal input, it is related to scaling.

		1
	ρ	
Se	etting	2
00	Jung	0

Functions

Parameters	Setting Range	Units	Initial Value
SP ramp set value	OFF,1~9999	EU	OFF

Related parameters

"input type" (p. 5-21), "scaling upper limit", "scaling lower limit" "decimal point", (p. 5-22).

āL-H	MV Upper Limit			L.RdJ
<u>āl-l</u>	MV Lower Limit			
Functions	 The "MV upper limit" a and lower limits. When or lower limit value, the 	and "MV lower limit" parameter ar the MV value calculated by the E e upper limit or lower limit is set to	e used to se 5EZ-PRR ex the output li	t the MV upper cceeds the upper mit.
	MV upper limit			
	Control Mode	Setting Range	Units	Initial Value
Settings	standard	MV lower limit +0.1~105.0	%	100.0
	MV upper limit			
	Control Mode	Setting Range	Units	Initial Value
Reference	standard	0.5 ~ MV upper limit -0.1	%	0.0
Position proportional dead band				
Functions	 Setting position propor and CLOSE output switching 	tional control output hold period (itch from ON to OFF) .	he time it tak	es OPEN output

Setting Range	Units	Initial Value
Floating: 0.1~10.0	%	2.0
Closed: 0.1~10.0	%	4.0

Related events

3.8 ceramic kiln position proportional control

Position proportional control fixed settings (p. 3-20).

<u>a[-H</u>

Hysteresis off/on

uses hysteresis.

L.RdJ

Functions

Reference

Setting RangeUnitsInitial Value0.1~20.0%0.8

With position proportional control, the OPEN and CLOSE output ON, OFF switching

Related events

3.8 ceramic kiln position proportional control

■ Position proportional control fixed settings (p. 3-20).

This level is used to set the basic specifications of the E5EZ-PRR . In this level, users can set the "input type" parameter used to select the sensor input type and link it to the E5EZ-PRR, limit set point's setting range or set alarm modes.

Press the O key for 3 seconds or more to switch from the operation level to the initial level.

- When "initial/communications protect" is set to "2", the initial level is not displayed. When "initial/ communications protect" is set to "0" or "1", the initial level may be used.
- When selecting analog signal input as the input type, the "scaling upper limit", "scaling lower limit" and "decimal point" parameters are displayed.

Initial Setting Level		
Input Type	Page No.	Page No. Direct / Reverse Operation 5-24
Scaling Upper Linit	5-22	Alarm 1 Type
Scaling Lower Limit Value	5-22	Alarm 2 Type
Decimal Point	5-22	Closed/Floating FLöL FLöL FLöL
Select °C/F	5-23	Electro-mechanical <i>FRL</i> <i>Electro-mechanical</i> <i>Calibration</i> 5-26
Set Value Upper Linit ↓ © €	5-23	Travel Time 5-27
Set Value Lower Limit Limit	5-23	Move to Rhou G Lini Set "- 169".
		æ

<u>In-</u>E

Input Type

•

•

LINI

Functions

•	Set code according to the following table. The shaded area represents the initial
	setting.

After changing parameters, the set point upper limit becomes the initial value. If

changing the set point limit range, users can set the "set point upper limit" and "set

By using the appropriate code, this parameter can set the sensor type .

Temperature input: E5EZ-PRR2

point lower limit" parameters (initial level).

Input Type	Name	Set Point	Input Tempe	rature Range
		0	-200 ~ 850 (°C)	/-300 ~ 1500 (°F)
platinum	Pt100	1	-199.9 ~ 500.0 (°C)	/-199.9 ~ 900.0 (°F)
resistance		2	0.0 ~ 100.0(°C)	/0.0 ~ 210.0 (°F)
thermometer	IP+100	3	-199.9 ~ 500.0 (°C)	/-199.9 ~ 900.0 (°F)
	JELIOU	4	0.0 ~ 100.0 (°C)	/0. 0 ~ 210.0 (°F)
	K	5	-200 ~ 1300 (°C)	/-300 ~ 2300 (°F)
	rx -	6	-20.0 ~ 500.0 (°C)	/0.0 ~ 900.0 (°F)
İ		7	-100 ~ 850 (°C)	/-100 ~ 1500 (°F)
	J	8	-20.0 ~ 400.0 (°C)	/0.0 ~ 750.0 (°F)
İ	т	9	-200 ~ 400 (°C)	/-300 ~ 700 (°F)
	•	22	-199.9 ~ 400.0 (°C)	/-199.9 ~ 700.0 (°F)
	E	10	0 ~ 600 (°C)	/0 ~ 1100 (°F)
Inernocoupie	L	11	-100 ~ 850 (°C)	/-100 ~ 1500 (°F)
İ		12	-200 ~ 400 (°C)	/-300 ~ 700 (°F)
	0	23	-199.9 ~ 400.0 (°C)	/-199.9 ~ 700.0 (°F)
	Ν	13	-200 ~ 1300 (°C)	/-300 ~ 2300 (°F)
	R	14	0 ~ 1700 (°C)	/0 ~ 3000 (°F)
Ì	S	15	0 ~ 1700 (°C)	/0 ~ 3000 (°F)
	В	16	100 ~ 1800 (°C)	/300 ~ 3200 (°F)
	10°C ~ 70°C	17	0 ~ 90 (°C)	/0 ~ 190 (°F)
Non-contact	60°C ~120°C	18	0 ~ 120 (°C)	/0 ~ 240 (°F)
Temperature Sensor ES1B	115°C ~ 165°C	19	0 ~ 165 (°C)	/0 ~ 320 (°F)
	140°C ~ 260°C	20	0 ~ 260 (°C)	/0 ~ 500 (°F)
analog signal input 0 ~ 50mV 21 The following variation to calibratio -1999 ~ 9999, -1		on ranges are related ion results -199.9 ~ 999.9		

Analog input type: E5EZ-PRR2
L

Input Type	Name	Set Point	Input Temperature Range
Current	4 ~ 20mA	0	Depending on scaling, use in one of
	0 ~ 20mA	1	these ranges:
Voltage	1 ~ 5V	2	-1999 ~ 9999, -199.9 ~ 999.9, -19.99 ~
	0 ~ 5V 3	3	99.99, -1.999 ~ 9.999
	0 ~ 10V	4	

Related parameters
 "Select °C/°F", "set point upper limit", "set point lower limit" (initial level) (p. 5-23)

In-H	Scaling Upper Limit	Lini
In-L	Scaling Lower Limit	Input type must be set to analog signal input .
dP	Decimal Point	
Functions	 When input type is analog When input type is analog limit" parameter set the up limit. 	signal input, these parameters can be used. signal input, execute calibration. For the "scaling upper per limit, for "scaling lower limit" parameter set the lower

• Decimal point parameter determines the parameter's decimal point (set point etc.) .

Settings

	Scaling upper	limit.	scaling	lower limit
-			o o a lining	

Parameters	Setting Range	Units	Initial Value
scaling upper limit	scaling lower limit +1 ~ 9999	none	100
scaling lower limit	-1999 ~ scaling upper limit-1	none	0

 Decimal point :initial value is "0:0 places after the decimal point " Temperature input type (E5EZ-PRR2
 T) can select
 [0~1]

Analog input type (E5EZ-PRR2 □ L) can select 「0~3」

Setting Range	Setting	Example
0	0 places after the decimal point	1234
1	1 places after the decimal point	123.4
2	2 places after the decimal point	12.34
3	3 places after the decimal point	1.234

Related parameters
 "input type" (initial level) (p. 5-21)

Parameters	Setting Range	Unit
Set point upper limit	Set point lower limit +1 is the sensor range upper limit	EU
Set point lower	Sensor range lower limit is the set point	EU

upper limit -1

Related parameters

limit

"input type" (p. 5-21), "select °C/°F" (p. 5-23) (initial level)

0

<u>ar</u> Eu	Direct/Reverse Operation
Functions	 "Direct operation" refers to control in which MV increasing as the process value increases. "Reverse operation" refers to control in which MV increases as the process value decreases.
Settings	Setting RangeInitial Valueac-creverse control/ac-ddirect controlac-c
RLLI	Alarm 1 Type
<i>RLLLZ</i>	Alarm 2 Type
/	 Select one of the following types for alarm 1 and 2: Eviation/deviation range/absolute value

Functions

Set	Alarm type	Alarm Inpu	t Operation
Value	, aann typo	X is positive	X is negative
0	No alarm function	Outpu	ut OFF
1	upper and lower limits *1		*2
2	upper limits	ON → X ← OFF SP	
3	lower limits		
4	upper and lower limit range *1		*3
5	standby sequence upper and lower limits *1		*4
6	standby sequence upper limits	ON → X ← OFF SP	ON → X ← OFF SP
7	standby sequence lower lower limits		ON OFF SP
8	absolute value upper limit		
9	absolute value lower limit		
10	standby sequence absolute value upper limit		
11	standby sequence absolute value lower limit		

*1: "L" and "H" represent the upper limit value and lower limit value, alarm points can be set independently for values 1, 4 and 5. Setting value: 1 upper and lower limit alarm

*2:

Case 1	Case 2	Case 3	
L H SP H< 0.L >0 H < L	SP L H H> 0.L <0 H > L	L SP H H LSP SP H L	H< 0.L <0 H< 0.L >0 H ≥ L H> 0.L <0 H ≤ L

*3:	Set	value: 4 upper	and I	lower	limit	range	ala	rm
Cas	e 1	Case 2		Ca	ise 3	3		
					_		_	

		H< 0.L <0
L H SP	SPL H	L SP H
H< 0.L >0 H < L	H> 0.L <0 H > L	H < 0.L >0 H L SP H A ≥ L
		H> 0.L <0 SP H L H ≤ L

*4: Set value: standby sequence 5 upper and lower limit alarm

*Used with the upper and lower limit alarms described above

- In cases 1 and 2, if the upper and lower hysteresis limit values overlap, the alarm will always be off. - In case 3, the alarm will always be off.

*5: Set value: standby sequence 5 upper and lower limit alarm

If hysteresis upper and lower limit values overlap, the alarm will always be on.

For "alarm 1 and 2 type" parameter (Initial Level), the alarm type of each alarm may be set independently. Initial value is "2: upper limit alarm".

Related parameters

"alarm value 1 and 2" (Operation Level) (p. 5-10)

"upper limit alarm value 1 and 2", "lower limit alarm value 1 and 2" (Operation Level) (p. 5-11)

"Standby Sequence Reset" (p. 5-31), "activate alarm 1, 2 and 3 on alarm", "alarm 1, 2 and 3 hysteresis" (p. 5-32 and 5-33), "alarm 1, 2 latch" (p. 5-36) (Advanced Function Level)

	Closed/Floating			Lini
Functions	 Select position proportio Closed control link potentiometer for val Floating control Potentiometer non-feedb linkage to the potentiometer 	nal control. lve open perc back valve op eter. For setti	centage feedback contro en percentage control o ings see page 5-26.	ol. can be done without
	Setting Bange	Unite	Initial Value	
A		Units		
Settings	ELAS: closed	—	floating	
Reference	 Related events 3.8 ceramic kiln position 	proportional	control (p. 3-17) .	
	Electro-mechanical			LIAL
Functions	 Execute electro-mechan sure to use this setting d After using this setting data 	ical calibratic lata (when in ata, "travel tii	on - When monitoring va use display cannot be me'' will be reset.	alve opening please be changed) .
Settings	 After switching to this setting data, setting content will change to "oFF". Selecting "on" will start electro-mechanical calibration. On completion it will automatically return to "oFF". 			
Reference	 Related events 3.8 ceramic kiln position settings (p.3-20). Related parameters "travel time" (Initial Leve 	proportional I) (p. 5-27).	control ■ Position pro	portional control fixed

Lini

nat

Travel Time

- Setting valve time from completely open to completely closed.
- Will be set automatically after using "electro-mechanical calibration".

Functions

Setting Range	Units	Initial Value
1 ~ 999	second	30

Related events

3.8 ceramic kiln position proportional control ■ Position proportional control fixed settings (p.3-20).

Related parameters

"electro-mechanical calibration" (Initial Level) (p. 5-26).

Advanced Function Level

This permits the maximum use of the E5EZ-PRR's functions. In the "Initial Level" enter the password ("-169") to switch to this level.

When entering password, "initial/communications protect" setting value must be set to "0".

- When the "initial/communications protect" setting values are set to "0", this level's parameters can be used.
- Press the O key to change between setting levels.
- Press the 🔊 key to change setting values.

The "Multi-SP" function is used to pre-set set point 0 through 3 by combining event input 1 and 2.

When the number of pre-set set point is 2 or 4, use the "number of multi-SP used" parameter . This parameter determines whether or not the "Event Input assignment 1" and "Event Input assignment 2" parameters will be displayed.

The parameter "number of multi-SP used" displays the functions given to event input 1 and 2.

Number of	Setting		Event Input Function		
multi-SP used	Event Input assignment 1	Event Input assignment 2	Event Input function	Event Input function	
0	NONE or STO	NONE or STOP or MANU *1		none or Switching or Switching AUTO/MANUAL *1	
1	- (not displayed)	NONE or STOP or MANU	, 2 points multi-SP (switch between set point 0/1) Switching Al MANUA		
2	- (not displayed)	- (not displayed)	4 points multi-SP (switch between setting values 0/1 2/3)		

*1 "stop (run/stop)" can only be set when Event Input is 0 or 1. Event input can only be used on the setting side. The setting on the other side will change to "none".

Initial value: 1

When the available event input units are already installed on the E5EZ-PRR, multi-SP can be used, "number of multi-SP used" is set to "1" or "2".

When number of multi-SP used is set to "1"

Event Input Indicator 1	Select the Setting Point	
OFF	set point 0	
ON	set point 1	

Event Input Assignment 1	Event Input Assignment 2	Select Set Point
OFF	F OFF set point 0	
ON	OFF	set point 1
OFF	ON	set point 2
ON	ON	set point 3

* when the available event input unit E53-AZB are installed on the E5EZ-PRR, event input can be used . When the E5EZ-PRR selects event input status. When event input requires 50ms or more, activate event input switch status determination.

Related parameters

"Event Input Assignment 1" (Advanced Function Level) (p. 5-30)

- "Event Input Assignment 2" (Advanced Function Level) (p. 5-30)
- "Multi-SP used" (Advanced Function Level) (p. 5-31)

When number of multi-SP used is set to "2"

"Set point 0 ~ 3" (Adjustment Level) (p. 5-14)

The function below are for event input 1 or event input 2: run/stop

Settings

Setting	Functions
nonE	None
Stöp	Run/Stop
ก็สึกป	Auto/Manual

The initial value for Event Input Assignment 1 is "none", and the initial value for Event Input Assignment 2 is "stop"

Related parameters "Set point 0 ~ 3" (Adjustment Level) (p. 5-14) "number of multi SP used" (Advanced Function Level) (p. 5-29)

Reference

RLHI	Alarm 1 Hysteresis	"Alarm 1 type" parameter must not be "0".	L.Adu
		•	

- This parameter sets alarm output 1 hysteresis.
- With analog signal input, decimal point setting depends on the "decimal point" setting.

	Setting Range	Units	Initial Value
Temperature Input	0.1 ~ 999.9	°C or °F	0.2
Analog Input	0.01 ~ 99.99	% FS	0.02

Related parameters

"alarm value1" (p. 5-10), "upper limit alarm value1", "lower limit alarm value1" (p. 5-11) (Operation Level) "alarm 1 type" (p. 5-24),

"Alarm 1 open in Alarm" (p. 5-32) , "Standby Sequence Reset" (p. 5-31) "Alarm1 latch (p. 5-36)" (Advanced Function Level)

RLZn

Alarm 2 Open in Alarm

L.Adu

- This parameter sets alarm2 output status.
- When the temperature controller is set to "shutdown on alarm", alarm output function status is always on. When set to "alarm on", alarm output status will reverse or shut off. The following table describes the relationship between alarm output function and alarm output and output LCD indicator lights.

Functions

	Alarm Output Function	Alarm Output	Output LCD Refers To The Indicator Lights
Close in Alarm	ON	ON	Lit
Close III Alarin	OFF	OFF	Not lit
Open in Alarm	ON	OFF	Lit
Open in Alann	OFF	ON	Not lit

Setting Range	Initial Value
close in alarm/م-٤ open in alarm	n-ŏ

Related parameters

setting.

"Alarm value 2" (p. 5-10), "upper limit alarm value2", "lower limit alarm value2" (p. 5-11) (Operation Level)

"Alarm2 type" (Initial Level) (p. 5-24)

"Alarm2 hysteresis" (p. 5-33), "Standby Sequence Reset" (p. 5-31), "Alarm2 latch" (p. 5-36) (Advanced Function Level)

		Alarm 2 type parameter must not be	
HLHC	Alarm 2 Hysteresis	"0".	L.Xdu

This parameter sets alarm output 2 hysteresis.

- Functions

)) I
	11
٠.	

	Setting Range	Units	Initial Value
Temperature Input	0.1 ~ 999.9	°C or °F	0.2
Analog Input	0.01 ~ 99.99	%FS	0.02

With analog signal input, decimal point setting depends on the "decimal point"

Related parameters

"Alarm Value 2" (Operation Level) (p. 5-10)

"Upper Limit Alarm Value 2", "Lower Limit Alarm Value 1 and 2" (Operation Level) (p. 5-11)

"Alarm 2 Type" (p. 5-24) (Initial Level)

"Alarm 2 Open in Alarm" (p. 5-33), "Standby Sequence Reset" (p. 5-31) "Alarm 2 Latch (p. 5-36) " (Advanced Function Level)

5-33

Additional Process Value Display

 Add process value display at the beginning of Operation Level. If you do not want the set point/valve open percentage to display, only use when displaying current temperature.

Setting Range	Initial Value	
on:display/ه۴۶ not displayed	6FF	

Automatic Display Return Time

L.Rdu

In the "Operation Level" and "Adjustment Level", if the panel setting keys are not used for a period of time, then the display will automatically return to the PV/SP/MV. When this parameter is set to "OFF", this function is not effective (display cannot change automatically).

Setting Range	Units	Initial Value	
OFF, 1~99	Second	<u>8</u> 66	

<i>Я 11.</i> Е	Alarm 1 Latch		L.Rdu
RZLE	Alarm 2 Latch	alarm fu	unction must not be set to "0"
Functions	 When this is set to "O turned off. But note th Level the latch functio When the alarm output set to alarm shutdown 	N", after the alar at when switchin n is cancelled. ut function is set n, connection out	m function is activated, it will hold until power is g to the Initial Level or Advanced Function to alarm on, output shutdown will hold. When put will hold.
	Setting Range	Initial Value	
Settings	مة: ON/هَ٣٩: OFF	öff	
Reference	 Related parameters "Alarm value 1 and 2" "upper limit alarm valu (p. 5-11) "Alarm1~2 type " (Init "Standby Sequence F" "Alarm 1 to 2 Open in (p. 5-32 and 5-33) 	' (Operation Leve ue1 and 2", "lowe ial Level) (p. 5-2 Reset" (Initial Lev Alarm", "Alarm"	el) (p. 5-10) er limit alarm value1 and 2" (Operation Level) el) rel) (p. 5-31) 1 ~ 2hysteresis" (Advanced Function Level)

Prit

Protect Level Switching Time

L.Rdu

• Sets the time required to switch from the Operation Level or Adjustment Level to the protect level.

Setting Range	Units	Initial Value
1 ~ 30	second	3

Related parameters "Operation/adjustment protect", "initial/communications protect", "setting adjustment protect", "automatic/manual key protect" (protect level) (p. 5-5)

Reference

"input error" (error display) (A-4)

<u>SErã</u>	MB Comm Switching	nand Logic J	communications model	function accords to	L.Rdu
Functions	 Sysway writing s MB com local sw The sha 	communications pro witching) mand (communicati itching) are equivale ded area indicates th	cedure, switch MB ons writing switchi nt. ne settings initial va	command logic (com ng) and E5 🗆 J MB co alues (same logic as I	munications
	Setting		MB Command	d Version Data	
Settings	Value	000	00	0001	l
Settings	OFF	communications writing activation (select remote mode)		communications writing deactivation (select local mode)	
	ON	ON communications writing deactivation (select local mode)		communications writing activation (select remote mode)	
Reference	 (includes the explanation of the symbols used in the E5 □ J). Related parameters "communications writing" (Adjustment Level) (p. 5-13) 				
8 lãn I	Alarm 1 C	N delay			L.Rdu
RZán	Alarm 2 C)N delay			
<u> 8 15</u> 5 8255	Alarm 1 C Alarm 2 C)FF delay)FF delay	Alarm1, 2 type is	s not "🗗: no alarm fun	ction"
	This parOutput a	ameter is used to se activation and shutdo	t alarm1, 2, 3 outp wn delay can be s	ut delay time. et separately.	

Setting Range	Units	Initial Value
0 ~ 99	Second	0

- Alarm type must be set to something other than $\,I\!\!\!\!\!\!\!\!\!\!\!\!\!$ type
- Related parameters
 - "alarm 1 ~ 2 type " (Initial Level) (p. 5-24)

Setting	Setting Range	Units	Initial Value
Process value dead band	0 ~ 99999	EU	0

Advanced Function Level

Setting Range	Initial Value
isplay/هَ۶۶: not display مَ	òn

Sets effectiveness of manual MV limit.

Manual MV Limit Effectiveness

Only closed control

L.Rdu

Settings

(during floating control, this setting value is not effective)

Communications Level

Setting communications specifications level. Can only be displayed by models with communications function.

Control in progress

- Press the O key to change between setting levels.
- Press the 🔊 key to change setting values.

Communications Unit Code

Communication Parity

Baud Rate

Data Length

Stop Bit

Communications function accords to model.

• When power is reset, all parameters are activated.

● Match the communications used on the E5EZ-PRR201 □ / PRR203 □ and the host. If using one to many connections, ensure that the system has uniform communications protocols (unless "communications unit code" is selected).

Functions

Parameter	Display Symbols	Setting Value	Initial Value	Setting Range
Communication s Unit Code	U-nõ	0, 1-99	1	0-99
Baud Rate 6P5		1. 2/2. 4/4. 8/9. 6/ 19. 2	9.6	1.2/2.4/4.8/ 9.6/19.2 (kb/ s)
Data Length	LEn	7/8	7	7/8 (bit)
Stop Bit	Sbit	1/2	2	1/2
Communication Parity	Prey	nănE/EuEn/ădd	EuEn	None/even/ odd

Related parameters

"communications writing" (Adjustment Level) (p. 5-13)

Appendix

Specifications	A-2
Ratings	A-2
Characteristics	A-3
Error Display	A-4
Parameter operations table	A-6
Sensor input settings and indicator range	A-10
Setting Data List	A-11
Parameter Flow	A-12
Sensor input settings and indicator range Setting Data List Parameter Flow	A-1 A-1 A-1 A-1

Specifications

Ratings

Power sup	oply voltage	100-240 VAC, 50/60 Hz			
Working v	oltage range	85% to 110% of rated s	supply voltage		
Power cor	sumption	10VA (10W)			
Sensor input		Temperature input	: thermocouple K, J, T, E, L, U, N, R, S, B Platinum resistance thermometer :Pt100, jpt100 Non-contact temperature sensor 10°C~70°C, 60°C~120°C 115°C~165°C, 140°C~260°C Analog signal input 0~50mv		
		Analog input	: current: 0~20mA, 4~20mA Voltage : 0~5V, 1~5V, 0~10V		
Control Output	Relay output (OUT1, OUT2)	SPST-NO, 250 VAC 1A(including startup current), Service life: 100,000 operations, minimum load of 5V 10mA			
Alarm output		SPST-NO, 250 VAC, 2A (resistive load) , Service life: 100,000 operations, minimum load of 1V 1mA			
Potentiom	eter input	100Ω~2.5kΩ			
Control m	ode	2-PID			
Setting mo	ode	Use the panel for digital settings			
Indicator r	node	7 segment digital display and single light indicator, character height PV:9mm SV:7mm MV:6.8mm			
Other func	tions	Based on controller model			
Ambient o	perating temperature	-10°C~55°C(with no condensation or icing)			
Ambient o	perating humidity	25-85% (RH)			
Storage te	mperature	-25°C~65°C(with no co	ndensation or icing)		
Elevation		2,000m or less			
Recomme	nded fuses	T2A, 250 VAC, hystere	sis , low breaking capacity		
Installatior	n environment	Category II, pollution level 2 (IEC 61010-1)			

* For the setting range of the sensor input , please see p. A-10.

Characteristics

Indicator accuracy	hermocouple: *1 (display value \pm 0.5% or \pm 1°C, whichever is greater) \pm 1 digit maximum(see note) Platinum resistance thermometer: (display value \pm 0.5% or \pm 1°C, whichever is greater) \pm 1 digit maximum Analog signal input: \pm 0.5% FS \pm 1 digit maximum Position proportional, potentiometer input : \pm 5% FS \pm 1 digit maximum				
Proportional band (P)	0.1~999.9°C (in units of 0.1°C)				
Integral time (I)	0~3999 (in units of 1 sec.)) $*$ floating control time is \lceil 1~3999 $ floor$			
Derivative time (D)	0~3999 (in units of 1 sec.)				
Completely open to completely closed	0~99 (in units of 1 sec.)				
Manual setting value	0.0~100.0% (in units of 0.1%)				
Alarm setting range	-1999~9999 (decimal point position depends on input type)				
Input sampling period	500ms				
Insulation resistance	At least 20M Ω 2 sec. (500	OVDC)			
Dielectric strength	2000VAC 50 or 60Hz 1 m	inute(different polarity charging terminal)			
Vibration resistance (malfunction)	10~55Hz, 20m/s ² X, Y and Z directions 10min each				
Shock resistance (malfunction)	100m/s ² , 3 times each axis, 6 directions				
Weight	Approx. 260g Accessories: approx 100g				
Storage device protection	EEPROM (nonvolatile) (write cycles: 100,000)				

*1 K (-200~1300°C) type, and T and N type thermocouples have a maximum indicator accuracy of $\pm 2^{\circ}C \pm 1$ digit below - 100°C, U and L type thermocouple have a maximum accuracy of $\pm 2^{\circ}C \pm 1$ digit over the entire measurement range. The indicator accuracy of B type thermocouples is unlimited below 400°C, while R and S type thermocouple have indicator accuracy of $\pm 3^{\circ}C \pm 1$ digit maximum below 200°C.

Error Display

When errors occur, the main display will alternately display the error code and the current display.

This section explains how to find error codes and corrective procedures.

5	Err Input e	rror
٠	Meaning	Input value exceeds input indicator range (input indicator range is -1999(-199.9) ~ 9999(999.9)) .
•	Corrective measures	Check input wiring for miswiring, disconnections, short circuits, and input type. If there are problems with the wiring or input type, shut off the power supply then turn it back on. If the display does not change, then the E5EZ-PRR must be replaced. If the display returns, , then the system might have been affected by electrical noise. check electrical noise.
•	Actions on error	Control output will output MV based on the "MV during error" setting position. Alarm output function is the same as when the upper limit is exceeded. When "output input error" (advanced function level) is set to ON, alarm 1 output will activate when an error occurs. When "process value" or "process value/setting value/valve open percentage" is displayed, error information will be displayed.

Even though this is not an error, when the control range exceeds the display range

 $(\text{-}1999(\text{-}199.9)\sim9999(999.9)$) , or the process value exceeds the display range, this will be displayed .

- Displays **]]]** when more than "9999 (999.9) "

[•] Actions on error Control continues, operates normally. When "process value" or "process value/ setting value/valve open percentage" is displayed, error information will be displayed.

E : : : Storag	e device error
• Meaning	Internal storage device error.
 Corrective measures 	First, disconnect and then reconnect the power supply. If the display does not change, then the E5EZ-PRR must be replaced. If the display returns, , then the system might have been affected by electrical noise. Check for electrical noise.
• Actions on error	Control output and alarm output off.
Potent	iometer input error
• Meaning	A potentiometer input error occurred. Valve opening outside the -10% ~ 110% range.
 Corrective measures 	Ensure that there are no wiring problems with the potentiometer, broken wires, or short circuits. If there are no wiring errors then the power supply can be turned on, and if the display content has not changed it will need to be replaced. If normal operation resumes then external interference might have been the cause, and should be avoided.
• Actions on error	Control output will output MV based on the "MV during error" setting position. Alarm output normal operation.
Electro	o-mechanical calibration error
• Meaning	Electro-mechanical calibration did not completely finish.

- Corrective Ensure that the potentiometer and valve drive motor were calibrated after they were wired.
- Actions on error Control output, alarm output set to OFF.

Parameter operations table

Manual control level

Parameter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Manual MV		-10~110.0			%	

Operation level

Parameter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Process value		Sensor input indicator range			EU	
Present value/set value/valve open percentage		SP lower limit ~ SP upper limit		0	EU	
Multi-SP	ñ-5P	0~3		0	None	
SP ramp set points	SP-ň	SP lower limit ~ SP upper limit			EU	
Run/stop	r-5	Run, stop	rUn, Ståp	Run	None	
Alarm value 1	RL-1	-1999~9999		0	EU	
Upper limit alarm value 1	RL IX	-1999~9999		0	EU	
Lower limit alarm value 1	RL IL	-1999~9999		0	EU	
Alarm value 2	RL-2	-1999~9999		0	EU	
Upper limit alarm value 2	RL 2X	-1999~9999		0	EU	
Lower limit alarm value 2	RL 2L	-1999~9999		0	EU	

Adjustment level

Parameter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Run/stop AT	RĿ	ON, OFF	ān, āFF	6F.F	None	
Communications writing	[AYE	ON, OFF	ān, āFF	6F.F	None	
Set point 0	5P-0	SP lower limit ~ SP upper limit		0	EU	
Set point 1	5P-1	SP lower limit ~ SP upper limit		0	EU	
Set point 2	58-5	SP lower limit ~ SP upper limit		0	EU	
Set point 3	5P-3	SP lower limit ~ SP upper limit		0	EU	
Temperature input shift	in5	-199.9~999.9		0.0	°C or °F	
Upper limit temperature input shift value	ins#	-199.9~999.9		0.0	°C or °F	
Lower limit temperature input shift value	insl	-199.9~999.9		0.0	°C or °F	
Proportional band	р	Temperature input: 0.1~999.9		8.0	EU	
		Analog input:0.1~999.9		10.0	%FS	
Integral time	Ĺ	Floating: 1~3999		233	Second	
		Closed: 0~3999				
Derivative time	d	0~3999		40	Second	
MV when stopped	ĩu-5	Closed, hold, open	CLOS, HOLd, OPEu	Hold	None	
MV during error	ĩu-E	Closed, hold, open	CLOS, HOLd, OPEu	Hold	None	
SP ramp set point	SPrt	OFF、1~9999	ōFF, 1~9999	OFF	EU	
MV limit upper limit value	őL-H	MV limit lower limit value +0.1~105.0		100.0	%	
MV limit upper limit value	õL-L	-5.0~MV limit upper limit value - 0.1		0.0	%	
Position proportional dead	db	Floating: 0.1~10.0		2.0	%	
band		Closed:0.1~10.0		4.0	%	
Hysteresis off/on	аC-Н	0.1~20.0		0.8	%	

Initial level

Parame	eter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Initial setting	Input type	īn-t	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	None	
			Analog 0 :4~20mA input 1 :0~20mA 2 :1~5V 3 :0~5V 4 :0~10V		0	None	
	Scaling upper limit	in-H	Scaling lower limit +1~9999		100	None	
	Scaling lower limit	in-L	-1999~scaling upper limit -1		0	None	
	Decimal	d٩	Temperature input: 0~1		0	None	
	point	L	Analog input: 0~3		0	None	
	Select °C/ °F	d-U	°C, °F	С, F	°C	None	
	Set point upper limit	5L - H	SP lower limit +1 through input range lower limit (temperature)		1300	EU	
			SP lower limit +1 through scaling upper limit(analog signal)		100	EU	
	Set point lower limit	5L - L	Input range lower limit through SPupper limit-1(temperature)		-200	EU	
			Scaling lower limit through SPupper limit-1(analog signal)		0	EU	
	Direct / reverse operation	ŏr£u	Direct operation, reverse operation	ŏr-d,ŏr-r	Reverse operation	None	
	Alarm 1 type	RLE I	0: turn off alarm function 1: upper limit and lower limit alarm 2: upper limit alarm 3: lower limit alarm 4: upper and lower limit range 5: attached standby sequence upper and lower limit alarm 6: attached standby sequence upper limit alarm 7: attached standby sequence lower limit alarm 8: absolute value upper limit alarm 9: attached absolute value lower limit alarm 10: attached standby sequence absolute value upper limit alarm 11: standby sequence absolute value lower limit alarm		2	None	
	Alarm 2 type	ALFS	Alarm 1 type		2	Second	
	Closed/ floating	ELFL	Closed, floating	FLōE,[LōS	Floating	None	
	Electro- mechanical calibration	CRL6	ON, OFF	ăn, ăFF	OFF	None	
	Travel time	ňöt	1~999		30	Second	
	Switch to advanced function level	Rõõu	-1999~9999		0	None	

Advanced function level

Parameter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Parameter initialization	init	ON, OFF	an aff	OFF	None	
Number of multi-SP used	Eu-ñ	0~2		1	None	
Event input indicator 1	Eu-1	Event input 1, run/stop, automatic /manual	nănE, StăP, ñRull	None	None	
Event input indicator 2	Eu-2	Event input 1, run/stop, automatic /manual	nănE, StăP, ñRull	RUN/ STOP	None	
Number of multi-SP used	ASPU	ON, OFF	an aff	OFF	None	
Standby sequence reset	rESE	Condition A, condition B	Я Ь	Condition A	None	
Activate on alarm1 on alarm	AL In	Activate on alarm /shutdown on alarm	n-ō n-[Activate on alarm	None	
Alarm 1 hysteresis	RLX 1	Temperature input1: 0.1~999.9		0.2	EU	
		Analog input: 0.01~99.99		0.02	%FS	
Activate on alarm2 on alarm	RLZn	Activate on alarm / shutdown on alarm	n-ō n-[Activate on alarm	None	
Alarma hystorosis	כעים	Temperature input 1:0.1~999.9		0.2	EU	
Alarmz hysteresis	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Analog input: 0.01~99.99		0.02	%FS	
α	<i>A</i> LFA	0.00~1.00		0.65	None	
Input digital filter	inf	0.1~999.9		0.0	Second	
Additional process value display	PuRd	ON, OFF	an aff	OFF	None	
Display mode automatic return	rEt	OFF, 1~9999	åFF 1~9999	OFF	Second	
Alarm1 latch	RILE	ON, OFF	an aff	OFF	None	
Alarm2 latch	RSLF	ON, OFF	an aff	OFF	None	
Protect level switching time	Prlt	1~30	ān āff	3	Second	
Output input error	SErõ	ON, OFF	an aff	OFF	None	
Cold junction compensation method	2.70	ON, OFF	ān āff	ON	None	
MB command logic switching	rlru	ON, OFF	an aff	OFF	None	
Alarm1 on delay	Rian	0~99		0	Second	
Alarm2 ON delay	RZān	0~99		0	Second	
Alarm1 OFF delay	Riaf	0~99		0	Second	
Alarm2 OFF delay	RZäf	0~99		0	Second	
When stop/error add MV	ñuSE	ON, OFF	ān āFF	OFF	None	
Process value dead band	P-db	0~9999		0	EU	
Valve open display	u-dP	ON, OFF	ān āFF	ON	None	
Manual MV limit is effective	ā8nL	ON, OFF	an aff	ON	None	

Protect level

Parameter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Operation/adjustment protect	6 <i>8</i> .PE	0~3		0	None	
Initial/communication protect	26 <i>P</i> E	0~2		1	None	
Setting change protect	95 <i>6</i> 5	ON, OFF	an aff	OFF	None	
Manual /automatic key protection	YEYP	ON, OFF	an aff	OFF	None	

Communications level

Parameter name	Symbol	Setting (monitor) value	Display	Initial value	Units	Setting value
Communications unit code	U-nā	0~99		1	None	
Baud rate	6PS	1.2, 2.4, 4.8, 9.6, 19.2	1.2,2. 4,48,9. 6,19. 2	9.6	Kbps	
Data length	LEn	7, 8		7	Bit	
Stop bit	Sbit	1, 2		2	Bit	
Communication parity	Pres	None, even, odd	nănE EuEn add	Even	None	

Sensor input settings and indicator range

E5EZ-PRR2 🗆 T

	Input type	Specifications	Setting value	Input tempe	rature range	Input indic	ator range
Thermocouple	Platinum	Pt100	0	-200~850 (°C)	/-300~1500 (°F)	-200~870 (°C)	/-340~1540 (°F)
/multi input type platinum resistance	resistance thermometer		1	-199.9~500.0 (°C)	/-199.9~900.0 (°F)	-199.9~520.0 (°C)	/-199.9~940.0 (°F)
thermometer			2	0.0~100.0 (°C)	/0.0~210.0 (°F)	-20.0~120.0 (°C)	/-40.0~250.0 (°F)
		JPt100	3	-199.9~500.0 (°C)	/-199.9~900.0 (°F)	-199.9~520.0 (°C)	/-199.9~940.0 (°F)
			4	0.0~100.0 (°C)	/0.0~210.0 (°F)	-20.0~120.0 (°C)	/-40.0~250.0 (°F)
	Thermocoupl	к	5	-200~1300 (°C)	/-300~2300 (°F)	-220~1320 (°C)	/-340~2340 (°F)
	е		6	-20.0~500.0 (°C)	/0.0~900.0 (°F)	-40.0~520.0 (°C)	/-40.0~940.0 (°F)
		J	7	-100~850 (°C)	/-100~1500 (°F)	-120~870 (°C)	/-140~1540 (°F)
			8	-20.0~400.0 (°C)	/0.0~750.0 (°F)	-40.0~420.0 (°C)	/-40.0~790.0 (°F)
		Т	9	-200~400 (°C)	/-300~700 (°F)	-220~420 (°C)	/-340~740 (°F)
			22	-199.9~400.0 (°C)	/-199.9~700.0 (°F)	-199.9~420.0 (°C)	/-199.9~740.0 (°F)
		E	10	0~600 (°C)	/0~1100 (°F)	-20~620 (°C)	/-40~1140 (°F)
		L	11	-100~850 (°C)	/-100~1500 (°F)	-120~870 (°C)	/-140~1540 (°F)
		U	12	-200~400.0 (°C)	/-300~700 (°F)	-220~420 (°C)	/-340~740 (°F)
			23	-199.9~400.0 (°C)	/-199.9~700.0 (°F)	-199.9~420.0 (°C)	/-199.9~740.0 (°F)
		Ν	13	-200~1300 (°C)	/-300~2300 (°F)	-220~1320 (°C)	/-340~2340 (°F)
		R	14	0~1700 (°C)	/0~3000 (°F)	-20~1720 (°C)	/-40~3040 (°F)
		S	15	0~1700 (°C)	/0~3000 (°F)	-20~1720 (°C)	/-40~3040 (°F)
		В	16	100~1800 (°C)	/300~3200 (°F)	0~1820 (°C)	/0~3240 (°F)
	Non-contact	10°C-70°C	17	0~90 (°C)	/0~190 (°F)	-20~130 (°C)	/-40~270 (°F)
	sensor ES1B	60°C-120°C	18	0~120 (°C)	/0~240 (°F)	-20~160 (°C)	/-40~320 (°F)
		115°C-165°C	19	0~165 (°C)	/0~320 (°F)	-20~205 (°C)	/-40~400 (°F)
		140°C-260°C	20	0~260 (°C)	/0~500 (°F)	-20~300 (°C)	/-40~580 (°F)
	Analog signal input	0~50mV	21	One of the ranges on the displayed re 1999~9999, -199.9~999.9	below, depending esults: -	-5 ~ 105% of the s (however, display - -199.9 ~ 999.9)	etting range 1999 ~ 9999 or

E5EZ-PRR2 🗆 L

Analog Input type	Current Input	4~20mA	0		-5 ~ 105% of the setting range
		0~20mA	1	-1999~9999	(however, display -1999 ~ 9999 or -199.9 ~ 999.9)
	Voltage Input	1~5V	2	-199.9~999.9	Other than the decimal point's
		0~5V	3	-19.99~99.99	numerical value range .
		0~10V	4	-1.999~9.999	

• Thermocouple/multi input type platinum resistance thermometer initial value is $\lceil 5 \rfloor$, analog input type is $\lceil 0 \rfloor$.

J, L: GB/T 4994-98

N: GB/T 17615-98

B: GB/T 2902-99

• Input type specifications are given below:

K: GB/T 2814-98	
E: GB/T 4993-98	
S: GB/T 3772-98	

T, U: GB/T 2903-98 R : GB/T 1598-98 JPt100, Pt100:GB/T5977-99

Control range

 Platinum resistance thermometer and thermocouple input temperature setting lower limit -20°C~ temperature upper limit+20°C or temperature setting lower limit -40F~ temperature setting upper limit+40F.

ES1B input type has the same input indicator range.

Analog input indicator range -5%~105%.

Setting Data List

The following chart gives an overview of the setting levels on the E5EZ-PRR. To switch to the advanced function level, you must input the password. Certain parameters will not be displayed, based on protect level settings and usage conditions.

When switching from the operation level to the initial level, control stops.

Parameter Flow

• If the mode key is pressed on the last parameter in a level, the display will return to the first parameter in the level.

Analog input sample will not display "°C" in the following list.

Adjustment Level

Communications level Ł aRPE Operation / Adjustment п Protect L.PrE ♥ @ Initial . CCPE Setting/Communicatio ns Protection LPrE •----YEPE Setting Change Protection öff L.Prt • Automatic/Manual гедр Key Protect öff L.Prt

• Operation/tuning protect

The initial value is [0].

٠

.

The relationship between the set point protect range is given below.

Modo	Setting value				
Mode	0	1	2	3	
Process value	0	0	0	0	
Setting value	O	O	O	0	
Other	O	O	×	×	
Adjustment level	O	×	×	×	

When the set point is $\lceil 0 \rfloor$, there is no protect function.

- © : can display/modify
- : can display
- × : cannot display /cannot switch level

 Initial/communications protect
 Initial setting level, communications setting level and advanced function setting level have limited access.

Setting value	Initial setting level	Communications setting level
0	Can switch (can switch to $\ \lceil$ advanced function setting level $\ floor$)	Can switch
1	Can switch (cannot switch to $\lceil advanced function setting level \rfloor$)	Can switch
2	Cannot switch	Cannot switch

• The initial value is $\lceil 1 \rfloor$.

• Setting modification protection

Limits can be changed using the keys.

aFF: settings can be changed using the keys.

in: setting cannot be changed using the keys, but the level can be changed.

• Automatic /manual key protect

Setting value	Automatic/Manual operation				
<u>ö</u> ff	Automatic /manual	can switch			
<u>ōn</u>	Automatic /manual	cannot switch			

• The initial value is [\$FF] .

Communications level

• Setting communications data

Set the E5EZ-PRR's communications specifications to match the communications settings on the host. In 1 to many point configurations, other than the communications unit codes, other settings should match each unit must have a unique communications unit code.

Parameter	Symbol Display	Setting (monitor) value	Setting	Initial Value	Units
Communicatio ns Unit Code	U-nā	0 ~ 99		1	None
Baud Rate	6PS	1.2, 2.4, 4.8, 9.6, 19.2	1. 2, 2. 4, 4. 8, 9. 6, 19. 2	9.6	Kbps
Data Length	LEn	7, 8		7	Bit
Stop Bit	5628	1, 2		2	Bit
Communicatio n Parity	Prey	None, even, odd	nănE,EuEn, ădd	Even inspection	None

Symbols

[AM] (manual/automatic) key	1-3
✓ (down) key	1-3
🔄 (mode) key	1-3
🔄 group key	1-3
	1-3
O (level) key	1-3
α	5-34

Numerics

1	point shift	4-2
1	point shift method	4-4
2	point shift	4-3
2	point shift method	4-4
2	Point Temperature Input Shift Example	4-5

Α

alarm	5-31
Additional Process Value Display	5-35
Adjustment Level	1-7
Adjustment level	A-6
adjustment level	5-12
Advanced Function Level	1-7
Advanced function level	A-8
Alarm 1 Hysteresis	5-32
Alarm 1 Open in Alarm	5-32
Alarm 1 Type	5-24
Alarm 2 Hysteresis	5-33
Alarm 2 Open in Alarm	5-33
Alarm 2 Type	5-24
Alarm Hysteresis	4-6
Alarm Latch	5-36
Alarm latch	4-6
Alarm ON delay	5-38
Alarm Operation Overview	4-7
Alarm output	2-5
Alarm Type	3-14
Alarm Value	3-15
Alarm value 1	5-10
Alarm value 2	5-10
analog signal input	. 4-9, 5-21
Assembly	2-3
AT Execute/Cancel	5-13
Automatic Display Return Time	5-35
Automatic/Manual Key Protect	5-6
Automatic/manual key protection	4-20

С

Calibrating	g Upp	oer	and	Lower	Limits	(Analog
Signal Inp	ut)					4-9
Calibration	۱					3-20
Calibration	ו and	trav	el tim	ie		3-20
Ceramic	Kiln	Se	tting	Positic	n Pro	portional
Control						3-17
Character	istics.					A-3

Closed/Electing	5-26
Closed/floating	A-7
Communication Functions	1-5
Communications	2-6, 2-7
Communications Level	1-7
Communications level	A-9
Communications Unit Code	5-42
Component Names	1-2
Connecting Wires	2-5
Control input 1	2-5
Control input 2	2-5
Control Output	1-5
Control Tuning	1-5

D

Data Length	5-42
decimal point5-10, 5-11, 5-14, 5-17,	5-22
decimal point is	5-23
derivative time 5-13,	5-16
Dimensions	2-2
Direct/Reverse Operation	5-24
Direct/reverse Operation	3-7
Display	1-3

Е

Electro-mechanical	. 5-26
Electro-mechanical calibration	A-7
Electro-mechanical calibration error	A-5
Error display	A-4
Event Input	1-5
event input	5-9
event input 1	. 4-11
Event Input Indicator	. 5-30
Exceed display range	A-4

F

Fixed settings for position proportional control3-
20
Front Panel1-2

Н

Hysteresis off/on 5-19

I

Initial level	A-7
initial level	5-20
Initial Settings Level	1-7
Initial/communication protection	4-20
Input Digital Filter	5-34
Input error	A-4
Input Error Output	5-37
Input Sensor Types	1-5
Input Shift Values	4-2
input type	. 5-21, 5-22

Input/Output Configuration	1-4
Installation	2-2
integral time	5-13, 5-16

Κ

Key protection4-20

L

lower limit temperature input shift value5-15

Μ

🖻 (mode) key	1-3
Manual Control Level	1-7
Manual control level	A-6
manual control level	5-3
Manual MV	5-4
Manual MV limit is effective	A-8
Manual Settings	3-12
MB Command Logic Switching	5-38
Multiple set point (set points 0 through 3)	5-8
Multiple set points	4-11
MV during error	5-17
MV when stopped	5-17

Ν

No. 1 Display	1-3
No. 2 Display	1-3
No. 3 Display	1-3
Number Of Multi SP Used	5-31
Number Of Multi-SP Used	5-29
number of multi-SP used	4-12

0

Operation Indicator Lights	1-3
Operation Level	1-7
operation level	3-9

Ρ

Panel Installation Holes2-2	2
Parameter Flow A-12	2
Parameter Initialization5-29	9
Parameter operations table A-6	3
Position Proportional Contro1-5	5
Potentiometer input error A-5	5
Potentiometer input errors)
Process value dead band A-8	3
Process value/set value/valve open percentage	е
5-8	
proportional band 5-13, 5-16	3
Protect Level1-7	7
Protect level A-8	3
Protect Level Switching Time5-36	3

R

Ratings A	-2
Run/Stop5	5-9

S

Sample Initial Settings 3-2
Scaling lower limit
Scaling upper limit 5-22
Select °C / °F 5-23
Selecting °C / °F 3-6
Sensor input settings and indicator range . A-10
set point 3-9
Set point limits 4-15
set points 5-23
set to the upper or lower limit 5-11
Setting Change Protect 5-6
Setting Communications Data 1-9
Setting Data List
Setting modification protection 4-20
Setting Output Specifications 3-7
setting set point lower limit 4-16
Setting set point upper limit 4-16
Setting SP Upper and Lower Limit Values 4-15
Setting the SP 3-9
Settings 4-16
Shutdown on alarm /alarm activation 4-7
SP Ramp 4-17
SP Ramp Operation Limits 4-18
SP ramp set point 4-17, 5-17
SP ramp set points 5-9
Specifications A-2
Standby Sequence 4-6
standby sequence 5-31
Standby Sequence Reset 5-31
Storage device errorA-5

Т

Temperature input	1-5
temperature input shift	4-2, 5-15
Temperature Unit	1-3
Travel Time	5-27
Travel time	A-7
travel time	3-20
type	5-31

U

upper limit temperature input shift value	5-15
upper or lower limit	5-23
Using Event Input	4-11
Using multiple set points	4-11
Using The Key Protection Level	4-20
Using the SP Ramp Function (to limit rate	of SP
change)	4-17

V

Valve ope	n disp	lay			A-8
Valve Ope	ening l	Display			5-40
Verifying settings)	PID	Constants	(AT	and	manual 3-10

W

When stop/error add MV	A-8
Wires Connecting Notice	2-4
Wiring	2-4

Authorized Distributor